Tonkin+Taylor

Exceptional thinking together www.tonkintaylor.co.nz

Distribution:

WFH Properties Ltd

Woods Ltd

Tonkin & Taylor Ltd (FILE)

2 copies

2 copies

1 сору

Table of contents

1	Introduction							
	1.1	Gene	ral	1				
	1.2	Descr	iption of Subdivision	1				
	1.3	Geolo	gical Setting	2				
2	Earthworks Operations							
	2.1	Plant		4				
	2.2	Const	ruction Programme	4				
	2.3	Comp	action Control	5				
3	Geotechnical Development Works							
	3.1	·						
	3.2	Reinfo	orced Earth Slope	6				
	3.3	Unde	rcuts	7				
4	Stabil	ity An	alyses	8				
5	Project Evaluation / Building Design Considerations							
_	5.1	•						
	5.2	Beari	eral Sing capacity for building foundations					
5.3			ling Limitation Zones – RE Slope					
	5.4	Settle	ement 9					
	5.5	Retair	ining walls 10					
	5.6	Subsc	oil Drainage	10				
	5.7	Post E	Earthworks Investigations	10				
	5.8		ıwater	11				
	5.9		ce lines	11				
			subgrades	11				
		Topso		11 11				
		5.12 Expansive soils						
6	Statement of Professional Opinion as to the Suitability of Land for Building Development13							
7	Applicability		y	18				
8		19						
Appendix A1 :			Woods Drawings					
Appendix A2:		2:	T+T Drawings					
Appendix B:			Contractors Certificates					
Appendix C:			NZS 3604:2011 Expansive Soils (Extract)					
Appendix D:		:	CSIRO – BTF18 – Foundation Maintenance and Footing Performance: A Homeowners Guide					
Appendix E:			Test Results					

Executive summary

Tonkin + Taylor Ltd (T+T) was engaged by WFH Properties Ltd to monitor and provide earthworks certification for the 19 No. Residential Lots contained within Stage 2B of Arran's Point Precinct 7 at the Millwater Subdivision in Silverdale. Stage 2B comprises residential Lots 101 to 119 inclusive as shown on the Woods Final Contour As–Built Plan (Woods Ref 37001–02B–100-AB) in Appendix A1.

This Geotechnical Completion Report contains information required for subdivisional earthworks completion reporting, as well as outlining geotechnical design issues that need to be considered for subsequent building design and construction on each residential Lot.

Previous geotechnical investigation work across the subdivision was undertaken by T+T and reported in:

- a 2000 and 2001 Preliminary feasibility reporting (Ref. [1] and [2]).
- b 2003 Major reconnaissance report covering land in the Silverdale North and Orewa West areas (Ref. [3]).
- c November 2011 Geotechnical Investigation Report for the North Bridge, Southern Abutment (Ref. [4]).
- d November 2013 Geotechnical Investigation Report for Arran's Point Precinct 7 (Ref. [5]).

Woods Ltd (Woods) undertook the engineering design for this stage and the overall subdivision.

Bulk earthworks associated with development of Stage 2B of Arrans Point (Precinct 7) commenced in March 2014 and were completed by February 2016. Earthworks comprised the following:

- a Stripping of vegetation, organic materials and topsoil to stockpile.
- b Installation of subsoil drains.
- c Cut to fill earthworks across the entire Stage 2B area as shown on the Woods Cut & Fill As–Built Plan Lowest to Subgrade (Woods Ref 37001–02B–110-AB) in Appendix A1.
- d Construction of a 1 in 1.5 (V:H) engineered fill batter slope (RE 4), up to 9m high along the southern boundary of Lots 101 to 119 as shown on T+T Drawing 21854.0037–APP7S2B–101 in Appendix A2.

Civil earthworks commenced on site in June 2016 and were completed by February 2017, and comprised the following:

- a Minor cut to fill earthworks across parts of the site as part of final Lot development.
- b Installation of roading and services.

Overall subdivisional soil types are moderately to highly expansive (Class M to H2), based on laboratory testing undertaken in accordance with AS 2870:2011 (Ref. [7]). Due to this classification, soils lie outside the definition of good ground within NZS 3604:2011 (Ref. [8]). Building foundations will require either specific foundation design for expansive soils or foundation design in accordance with AS 2870:2011 (Ref. [7]). Subject to design issues outlined in Section 3, and CSIRO recommendations outlined in the Appendices relating to expansive soils foundation design and home owner maintenance, each residential Lot is considered to have a building platform area generally suitable for domestic residential development subject to specific geotechnical assessment and foundation design due to the presence of expansive soils and where Lots contain, or are adjacent to, land with slopes steeper than 1 in 4 (V:H).

Foundation design for residential development should proceed in accordance with Sections 6.5 to 6.9 of this report.

1 Introduction

1.1 General

Tonkin + Taylor Ltd (T+T) was engaged by WFH Properties Ltd to monitor and provide earthworks certification for the 19 No. Residential Lots contained within Stage 2B of Arran's Point Precinct 7 at the Millwater Subdivision in Silverdale. Stage 2B comprises residential Lots 101 to 119 inclusive as shown on the Woods Final Contour As–Built Plan (Woods Ref 37001–02B–100-AB) in Appendix A1.

Previous geotechnical investigation work across the subdivision was undertaken by T+T and reported in:

- a 2000 and 2001 Preliminary feasibility reporting (Ref. [1], [2]).
- b 2003 Major reconnaissance report covering land in the Silverdale North and Orewa West areas (Ref. [3]).
- c November 2011 Geotechnical Investigation Report for the North Bridge, Southern Abutment (Ref. [4]).
- d November 2013 Geotechnical Investigation Report for Arran's Point Precinct 7 (Ref. [5]).

The preliminary (Ref. [1], [2]) and investigation (Ref. [3], [4], [5]) reports noted the presence of existing instability comprising landsliding, soil creep and shallow slope movement across much of Arran's Point Precinct 7. These features were proposed to be stabilised, and/or undercut and replaced with engineered fill, during development works. While these stabilisation works are required across much of Precinct 7, such works were not generally required to achieve satisfactory factors of safety against instability for the finished development of Stage 2B. However, undercutting was required to enable installation of the geogrid reinforcement required within the reinforced earth slope (REO4), as well as to ensure the RE slope was founded in competent ground.

Earthworks compaction control, in terms of minimum shear strengths and maximum air voids, was recommended, and, along with other recommendations, has been incorporated into our control of the works and, where applicable, included in completion reporting.

The scope of work covered by this completion report includes:

- a Review of geotechnical investigation reporting for the site;
- b Monitoring and certification of earthworks operations in compliance with NZS 4431:1989 (Ref. [6]), including construction of 1 No. reinforced earth slope (RE 4);
- c Assessment of soils for expansive conditions in accordance with AS 2870:2011 (Ref. [7]);
- d Certification of completed Lots for residential development in accordance with NZS 3604:2011 (Ref. [8]).

Woods Ltd (Woods) undertook subdivision engineering design and civil works construction observations. As-built plans showing final contours and cut and fill depths have been prepared by Woods and are attached in Appendix A1.

1.2 Description of Subdivision

The Millwater subdivision is situated to the north of the Silverdale Township, and west of the Metro Park East reserve area, and comprises approximately 260 hectares. The subdivision is bound to the south and west by Wainui Road and the Northern Motorway, to the north by the Orewa Estuary and Grand Drive and to the east by the Orewa Estuary and Millwater Parkway. The original site comprised a mix of farm properties and associated dwellings and existing residential developments.

The Arran's Point Precinct 7, Stage 2B area of the Millwater subdivision is located within what is known as Precinct 7 in the Orewa West Structure Plan.

The Arran's Point Precinct 7 area is bound by Arran Drive to the west, and the Orewa estuary to the north, south and east. The overall Arran's Point Precinct 7 and Stage 2B areas are shown on T+T Drawing 21854.0037–APP7S2B–100 in Appendix A2.

Pre-development gradients within the Stage 2B area were gentle to moderately steep (1 in 3 to 1 in 15 (V:H)) with an overall fall to the north.

Post-development gradients within the Stage 2B area remain gentle to moderately steep (1 in 5 to 1 in 15 (V:H)) and generally fall to the north and north-west. In order to form gentler building platform areas, a steep reinforced earth slope of up to 1 in 1.5 (V:H) has been constructed along the southern boundary of Lots 101 to 119 as shown on T+T Drawing 21854.0037—APP7S2B—101.

Stage 2B is presently accessed from the existing Maka Terrace.

1.3 Geological Setting

Published geological mapping and information indicates the Arran's Point Precinct 7 area is underlain by East Coast Bays materials. In addition to the East Coast Bays materials, our investigations identified the presence of alluvial materials on site.

Figure 1 - Local Geology (from Edbrooke)

Summary descriptions of geological units in the Arrans Point area (after Kermode 1991) are as follows:

a East Coast Bays Formation

Alternating sandstone and mudstone with variable volcanic content (volcanic-poor lower in the sequence and mixed volcanic content higher) and interbedded volcaniclastic grit beds. These material typically show a well-developed weathering profile of clay, silt or sand depending on the parent lithology.

b Pleistocene Age Alluvium

Up to 20 m thick and from 3 to 10 m above present base level: forms higher coastal and valley terraces throughout the map area; in places locally discontinuous or absent. These alluvial deposits are typically very thinly to very thickly bedded, yellow-grey to orange-brown, angular to well rounded, mixed sizes (usually graded, coarse becoming fine upwards) of mud, sand and gravel, comprising rock fragments and weathered rock residue from the hinterland. They include some beds of black, humus-rich clay and white, pumice silt.

Geological cross-sections through the Arran's Point Precinct 7, Stage 2B area, based on site investigations and observations during construction, are enclosed as Drawing Number 21854.0037—APP7S2B—103 in Appendix A2.

Fill material placed across the site to form the final design profile typically comprised site-won East Coast Bays Formation materials.

Earthworks Operations 2

2.1 **Plant**

Bulk earthworks and civil works were undertaken by Hick Bros Civil Construction Ltd (Hicks). Various areas of soft and/or wet materials were encountered during the works and were undercut and replaced with engineered fill. Much of this undercut material was considered suitable for re-use as engineered fill if conditioned appropriately. Accordingly, mixing of the cohesive fill materials with lime/cement to facilitate fill placement and compaction was undertaken by Hiway Stabilizers Ltd (Hiway) under Hicks' control.

Various earthworks equipment was used to undertake the works, comprising motor scrapers, articulated dump trucks, tractors and discs, sheepsfoot compactors, padfoot rollers, and a number of 12 to 35 tonne excavators. This plant generally carried out all construction earthworks.

Specialist contractors and plant were brought on site for pavement construction. Certification of the pavement construction is beyond the scope of this report.

2.2 **Construction Programme**

Subdivisional earthworks commenced from March 2014 through to February 2016 under Hicks' control. Civil earthworks and construction for the residential Lots were also under Hicks' control and were undertaken progressively from June 2016 through to completion in February 2017.

Key Stage 2B earthworks components included:

- Stripping of vegetation, organic materials and topsoil to stockpile. a
- b Installation of subsoil drains.
- Cut to fill earthworks across the entire site as shown on the Woods Cut & Fill As-Built Plan c Lowest to Subgrade (Woods Ref 37001–02B–110-AB) in Appendix A1.
- Construction of a 1 in 1.5 (V:H) engineered fill batter slope (RE 4), up to 9m high, along the d southern boundary of Lots 101 to 119 as shown on T+T Drawing 21854.0037-APP7S2B-101 in Appendix A2.

Key Stage 2B civil works components included:

- Minor cut to fill earthworks across parts of the site as part of final Lot development. а
- Installation of roading and services.

The earthworks, reinforced earth slope, undercuts and subsoil drainage as-built plans are included in Appendix A1 (Woods Drawings 37001–02B–100–AB, –110 to –111 and –120 to –122), and show the earthworks undertaken across the site.

We note that, at time of writing, a topsoil stockpile remains across a number of the Lots, and the asbuilts presented herein are based on the subgrade surface prior to placement of the stockpile. We understand this stockpile will be removed prior to release of the Lots.

2.3 Compaction Control

Compaction control criteria, consisting of maximum allowable air voids and minimum allowable shear strengths, were used for cohesive fill control. The Technical Specification included in our Geotechnical Investigation Report (Ref. [4],[5]) included the following requirement for the subdivisional earthworks:

Minimum Shear Strength and Maximum Air Voids Method

Minimum Undrained Shear Strength (Measured by insitu vane – IANZ calibrated)

General fills:

Average value not less than

140 kPa

Minimum single value

110 kPa

High Strength Structural fills (Reinforced Earth Fill Slopes):

Average value not less than

150 kPa

Minimum single value

120 kPa

Maximum Air Voids Percentage (as defined in NZS 4402:1986)

General fills:

Tonkin & Taylor Ltd

Average value not more than

10%

Maximum single value

12%

High Strength Structural fills (Reinforced Earth Fill Slopes):

Average value not more than

8%

Maximum single value

10%

The average corrected shear strength value was determined over any ten consecutive tests.

Regular in situ density, strength and water content tests were carried out on the filling at, or in excess of, the frequency recommended by NZS 4431:1989 (Ref. [6]). Test results are contained in Appendix E.

Quality Control (QC) testing showed that the results for the filling were consistently meeting the required undrained shear strength, density and air voids criteria, demonstrating that the water content of placed fill was consistently at, or close to, optimum. To the best of our knowledge, any problems encountered were rectified, where required, by close monitoring of the selection of borrow materials, discing and remixing of the available soil types and minor reworking.

3 **Geotechnical Development Works**

3.1 **Subsoil Drainage**

A network of subsoil drains has been installed across Arran's Point Precinct 7 during bulk earthworks as part of the reinforced earth slope construction.

Subsoil drains installed as part of reinforced earth slope construction comprised the following:

- 160mm diameter, Hiway grade, perforated Nexus pipes along the base of the rear of the reinforced soil block.
- SAP50 scoria over the top of the Nexus pipe and up the back face of the reinforced soil block, b to within 2.0 metres of the ground surface (at time of construction).
- Bidim A19 geotextile filter-cloth over the top of the scoria prior to placement of the reinforced С soil.

The reinforced earth slope drains were connected to the reticulated stormwater system, as shown on the Woods Shear Key, Undercuts & Subsoil Drains As-Built Plans (Woods Ref 37001-02B-120-AB) and on T+T Drawing 21854.0037–APP7S2B–102 in Appendix A2.

3.2 Reinforced Earth Slope

A reinforced earth slope (RE 4) was constructed during the bulk earthworks within Stage 2B.

The slope comprises biaxial geogrids placed at 0.5m (vertical) intervals within the well compacted engineered fill, placed in accordance with the bulk earthworks specification (Section 2.3 above). The grids extend up to within 1.5m (vertical) of the slope crest. They have been placed at various lengths, starting at the face of the slope.

A typical cross-section through the RE slope is shown on T+T Drawings 21854.0037–APP7S2B–104 and 105 in Appendix A2.

The placement of the geogrid allows steeper finished gradients than is typically possible with unreinforced bulk fills, and minimises the risk of instability across the face of the slope, particularly where finished gradients across the slopes are up to 1 in 1.5 (V:H).

Construction of the RE slope comprised the following:

- Foundation preparation; а
- b Placement and compaction of fill to the required levels;
- Placement of the geogrid layers, ensuring that the grid is held tightly in place; С
- Spreading of fill across the surface of the geogrid with lightweight plant; d
- Compaction and placement of further fill up to the level of the next grid layer; e
- Installation of Enkamat across the face of any slopes steeper than 1 in 2 (V:H) to assist in f retention of the topsoil facing while vegetation is established.

The fill was placed and compacted beyond the limit of the final slope face and then trimmed back to ensure full compaction of the slope face was achieved, taking care not to damage the geogrid.

As noted in Section 3.1, a drainage blanket was installed at the rear of the reinforced block of soil and comprised a minimum of 300mm thickness of SAP50 scoria, covered in Bidim A19 geotextile filtercloth and a cap of cohesive fill 2.0m in thickness. A 160mm diameter perforated Nexus pipe at the base of the drainage blanket provides a discharge outlet for any groundwater captured in the drainage blanket. The drainage pipe is connected into the stormwater system.

This slope has been designed to accommodate construction of a lightweight structure of up to 10kPa distributed load at the crest of the slope.

The slope face will be subject to a planting covenant preventing construction within this area. Protection of the geogrids from damage also precludes construction across the slope face and immediately adjacent to the slope crest. Accordingly, a building restriction zone has been applied across the slope (See Sections 5.3 and 6.6, and T+T Drawing 21854.0037-APP7S2B-110 in Appendix A2).

The reinforced earth slope drainage system is also shown on the T+T As–Built plans in Appendix A2.

Undercuts 3.3

A 2m deep, minimum 5m wide, undercut was excavated below the toe of RE4 to ensure a consistent subgrade. The undercut was replaced with engineered, compacted fill, placed in accordance with the bulk earthworks specification (Section 2.3 above).

The extent of the undercut areas is shown on the Woods Shear Key, Undercuts & Subsoil Drains As-Built Plan (Woods Ref 37001–02B–120–AB) in Appendix A1.

Tonkin & Taylor Ltd

4 Stability Analyses

As noted in Section 1, slope stability analyses undertaken during the investigation stage of the project identified that shear keys were not required to achieve satisfactory factors of safety against slope instability for the finished development of Stage 2B.

Observations and monitoring were undertaken during bulk earthworks construction to confirm that the ground conditions exposed were consistent with the assumptions made in the stability analyses.

We are satisfied that the design stability analyses remain valid for the completed works on the following basis:

- a the exposed ground conditions generally conform to those assumed for design;
- b the as-built profiles match design levels;
- the earthworks monitoring shows compliance with specified criteria, upon which fill properties have been based.

Project Evaluation / Building Design Considerations 5

5.1 General

Ground conditions within the Arran's Point Precinct 7, Stage 2B area straddle a range of "design conditions" including cut ground, filled ground, expansive soils and constructed slopes up to 1 in 1.5 (V:H). The following sections set out relevant geotechnical design issues.

Bearing capacity for building foundations 5.2

All filled and natural ground within the influence of conventional residential shallow strip and pad foundation loads is assessed as generally having a geotechnical ultimate bearing capacity of 300kPa, as required by NZS 3604:2011 (Ref. [8]). This corresponds to a factored (Ultimate Limit State) bearing capacity of 150kPa and working (Serviceability Limit State) bearing capacity of 100kPa.

Due to the presence of expansive soils, foundation conditions fall outside the definition of "good ground" contained in NZS 3604:2011 (Ref. [8]). In terms of AS 2870:2011 (Ref. [7]), the soils present are considered to lie within Site Class M to H2 (moderately to highly expansive) with characteristic surface movements anticipated to be in the range of 20mm to 40mm and 60mm to 75mm respectively. Due allowance should be made for expansive soils, as discussed in Section 5.12.

Where a geotechnical ultimate bearing capacity greater than 300kPa is required to support any dwelling constructed outside the scope of NZS 3604:2011 (Ref. [8]), further specific site investigation and design of foundations will be required.

Building Limitation Zones – RE Slope 5.3

Identified steep slopes in the Stage 2B area have been constructed as reinforced earth fill structures with face gradients of up to 1 in 1.5 (V:H). They are located in Lots 101 to 119. Construction within the flatter parts of these Lots is intended, and a Building Limitation Zone ("No Build Zone") has been developed across the steeper sections of the Lots to ensure that the reinforcement of the slopes is not detrimentally affected by future development. The extent of the Building Limitation Zone associated with the RE slope is shown on T+T Drawing 21854.0037-APP7S2B-110 (Building Limitation Plan) in Appendix A2. Excavation, fill placement and/or construction within this zone is not permitted.

Vegetation on slopes that are 1 in 4 (V:H) or steeper is recommended to reduce the potential for shallow slope instability and to minimise surface erosion. Where gradients are 1 in 4 (V:H) or steeper, there is potential for minor shallow creep of the topsoil layer. However, such creep is considered unlikely to detrimentally affect the global stability of the slope.

Where slopes exceed gradients of 1 in 2 (V:H), "Enkamat" or "Geocells" have been anchored to the face of the RE Slope to function as a protective reinforcing layer for the topsoil and plant root system.

5.4 Settlement

From our inspections during earthworks operations, and the results of compaction quality control testing, we consider that differential settlement induced by self-weight of engineered fill should now be largely complete. Further settlements should be within normally accepted design tolerances of 25mm, as outlined in NZS 3604:2011 (Ref. [8]), with respect to conventional building development.

In order to minimise the risk of ground settlements exceeding 25 mm, NZS 3604:2011 (Ref. [8]) allows a maximum fill surcharge of 600 mm over the building platform during future development. Filling in excess of this thickness should be subject to specific foundation design and assessment.

Retaining walls 5.5

Due to the relatively shallow grades across most of the Stage 2B Lots, it is not anticipated that significant retaining walls will be required. However, if walls are required, then retaining wall design will be dependent on the site specific requirements.

For preliminary design we recommend the use of the following geotechnical design parameters:

```
y = 18 \text{ kN/m}^3,
c' = 0 \text{ kPa}
Q' = 30^{\circ},
K_a = 0.30,
K_p = 3.33,
```

"Su" of 50kPa for the embedment soil (subject to confirmation during construction).

These values are based on level ground above and below the wall and will require appropriate amendment to allow for slope, traffic and other surcharges or toe slopes and the specific lot geometry and development requirements, as applicable.

All retaining walls should include a layer of free draining granular fill (with geotextile over the top) immediately behind the wall covered with a 0.3m thick (minimum) compacted clay fill cap, with intercepted groundwater seepage piped into the reticulated stormwater system.

Any walls greater than 1.5m retained height, or within within 2m of the toe of the RE slope will require a geotechnical assessment, as a minimum, to check and confirm that the stability of the subject (or adjacent) Lot is not detrimentally affected. Retaining walls downslope of the RE slopes shall also take into account the load imposed by these slopes.

5.6 **Subsoil Drainage**

Groundwater drainage was installed during bulk earthworks using Nexus drains covered in scoria and geotextile cloth to permanently handle ground water flows.

The extent of the subsoil drainage systems are shown on the Woods Shear Key, Undercuts & Subsoil Drains As-Built Plan (Woods Ref 37001-02B-120-AB) in Appendix A1, and on T+T Drawing 21854.0037-APP7S2B-102 in Appendix A2.

This drainage system is relatively deep and located so that it is unlikely to be encountered during future residential site development and is expected to be maintenance free. Any deep excavations should take account of the presence of these drains nonetheless. If a drain is encountered, damaged, or identified as defective, repairs should be observed by a Chartered Professional (Geotechnical) Engineer familiar with this report, and notified to Auckland Council.

5.7 Post Earthworks Investigations

Following the completion of earthworks operations, T+T have undertaken supplementary fieldwork to confirm the consistency of the natural subsoils and engineered fill. From the investigations, we confirm that the subsoils are considered to have a geotechnical ultimate bearing capacity of 300kPa, as required by NZS 3604:2011 (Ref. [8]). This corresponds to a factored (Ultimate Limit State) bearing capacity of 150kPa and working (Serviceability Limit State) bearing capacity of 100kPa. Associated borehole logs and site plan (T+T Drawing 21854.0037–APP7S2B–111) are attached in Appendix E.

5.8 Stormwater

Public stormwater services have been installed within Arran's Point Precinct 7, Stage 2B. Stormwater and runoff from roofs, decks and paved areas, together with discharges from future retaining wall drains and other subsoil drainage must be connected directly into the public stormwater drainage network.

5.9 Service lines

Trench backfill has been compacted to minimise potential for future settlements. However, where building envelopes lie adjacent to or across service lines, all foundations should extend and be founded below the 45 degree zone of influence line from pipe inverts. This requirement is to avoid excessive pipe surcharges, and to allow for future maintenance of the system without detrimentally affecting adjacent structures. Subject to approval from Auckland Council, foundations may extend and bridge over service lines provided specific foundation design is undertaken.

A copy of the stormwater as—built plans for Stage 2 (Woods Ref 37001–02–300–AB to –303) is included in Appendix A1.

5.10 Road subgrades

Based on the fill monitoring and site observations during development, filled and natural ground within the road and vehicle access Lots is considered generally suitable for the proposed residential pavements. Subgrade strength testing was carried out following excavation to formation levels along the road alignments. These subgrade test results were passed on to Woods for use in their pavement design. All road subgrades have been lime and cement stabilised to assist in pavement strengths, and to minimise the impact of expansive soils on road pavements.

For future road construction in other parts of the Arran's Point Precinct 7 Stage 2B development, within natural ground, a design CBR of 2% is considered appropriate while, within engineered fill areas, a design CBR of 7% is appropriate.

5.11 Topsoil

Due to the presence of a stockpile currently present across many of the Lots in this stage, topsoil depths have not been measured.

5.12 Expansive soils

Expansive soils (or "reactive soils" using Australian terminology) are clay soils that undergo appreciable volume change upon changes in moisture content. The reactivity and the typical range of movement that could be expected from soils underlying any given building site depend on the amount of clay present, clay mineral type, and proportion, depth and distribution of clay throughout the soil profile. Moisture changes tend to occur slowly in clays and produce swelling upon wetting and shrinkage upon drying.

Apart from seasonal moisture changes (wet winters / dry summers) other factors that can influence soil moisture content include:

- a Influence of garden watering and site drainage;
- b The presence of large trees (especially fast growing Australian species such as eucalyptus) close to building envelopes, and;
- c Initial soil moisture conditions at construction time.

Visually, the surfaces of expansive soils are noted for developing extensive cracking during dry periods (especially late summer through autumn in Auckland) and can be locally identified by this feature when sites are excavated and left for a week or two to dry out. Further information on expansive soils is given in Appendices C and D of this report.

In order to assess for the presence of expansive soils within this stage of the development, representative soil samples were retrieved from near surface strata and tested by Geotechnics Ltd to determine soil shrinkage characteristics in accordance with AS 1289.7.1.1.

Based on the laboratory results (attached in Appendix E), the foundation soils on this stage of the subdivision lie outside the definition of 'good ground' as outlined in NZS 3604:2011 (Ref. [8]).

In terms of AS 2870:2011 (Ref. [7]), the soils present are considered to lie within Site Class M to H2 (moderately to highly expansive) with characteristic surface movements anticipated to be in the range of 20mm to 40mm and 60mm to 75mm respectively.

Accordingly, building foundations on this stage of the subdivision will need to be subject to specific foundation design by a Chartered Professional Engineer familiar with the contents of this report and responsible for design of structural elements (including foundations) of the building. Reference should be made to AS 2870:2011 (Ref. [7]) for assistance.

6 Statement of Professional Opinion as to the Suitability of Land for Building Development

I, Mr A.P. Stiles of Tonkin + Taylor Ltd, P O Box 5271, Wellesley St, Auckland, hereby confirm that:

- 6.1 I am a Chartered Professional Engineer experienced in the field of geotechnical engineering and an authorised representative of Tonkin + Taylor who was retained by WFH Properties Ltd as the Geotechnical Engineer on Arran's Point Precinct 7 Stage 2B (comprising residential Lots 101 to 119 inclusive) of the Millwater Residential Subdivision Development off Arran Drive in Silverdale. Inspection and observation of the works have been carried out during construction by either myself or staff acting under my direction.
- 6.2 The extents of investigations are described in Tonkin + Taylor Ltd Geotechnical Investigation Report for Arran's Point Precinct 7 Ref No. 21854.0037 dated November 2013. The conclusions and recommendations of those documents have been re-evaluated in the preparation of this report. Details of all earthworks control tests performed are enclosed (Appendix E).
- 6.3 The Contractor has confirmed that the work undertaken has been completed in accordance with the drawings, specifications and any variations issued and is consistent with the inspections and observations carried out by Tonkin + Taylor Ltd. Complete Construction Certificates have been provided by the Contractor and are presented in Appendix B. Tonkin + Taylor Ltd accepts no liability for any errors or omissions represented by those documents.
- 6.4 On the basis of our observations and inspections together with the information supplied by others, including the Contractor's Construction Certificates, it is my professional opinion, not to be construed as a guarantee that:
 - 6.4.1 The earth fills shown on the attached Woods drawings, Project No 37001, Millwater, Arran's Point Precinct 7, Stage 2B, Drawing Numbers 37001–02B–100–AB, –110 to 111 and –120, have been generally placed in compliance with NZS 4431:1989 (Ref. ([6]).
 - 6.4.2 The completed earthworks give due regard to land slope and foundation stability considerations.

6.5 For Lots 101 to 119 inclusive:

- 6.5.1 These Lots contain a "Building Line Limitation" relating to the reinforced earth slope which forms the 1 in 1.5 (V:H) slope along the Lot boundaries. The limitation zone is shown on T+T Drawing 21854.0037—APP7S2B—110 in Appendix A2. Excavation, filling and/or construction within this zone is not to be undertaken, to ensure stability of the slope is not compromised.
- 6.5.2 The presence of geogrids within the reinforced earth slopes is brought to the attention of future building and services designers. The topmost grid is located between 1 to 2 metres below the surface at the top of the slope, and does not generally extend more than 2 metres back from the crest of the slope. It is not expected that the grids will be encountered during future development of this Lot, however, the presence of the grids should be recognized. Any exposure and/or damage and subsequent repair to the grids during any future development must be observed and certified by a Chartered Professional Engineer (Geotechnical) familiar with the contents of this report.

Design of the reinforced earth slope has assumed a maximum distributed load of 10kPa (dead plus live loads) up to the edge of the Building Limitation Line.

Any cut or fill walls greater than 1.5m retained height, or of any height within 2m of the building limitation lines shown on T+T Drawing 21854.0037-APP7S2B-110 in Appendix A2, will require a geotechnical assessment, as a minimum, to ensure stability of the subject or adjacent Lot is not detrimentally affected.

Foundation design 6.5.4

The filled and natural ground within residential Lot boundaries is considered generally suitable for the erection thereon of light timber framed, flexibly clad residential buildings subject to clauses 6.5.5 to 6.5.9.

Bearing capacity 6.5.5

Foundation design for these Lots should limit geotechnical ultimate bearing capacity to 300 kPa (factored (ULS) 150 kPa, working (SLS) 100 kPa). This is as specified in NZS 3604:2011 (Ref. [8]).

Expansive soils – Lots 101 to 108 and 116 to 119 6.5.6

> Due to the presence of expansive clay soils, foundation soils lie outside the definition of 'good ground' in NZS 3604:2011 (Ref. [8]). Soils on these Lots are considered to lie in Site Class M (moderately expansive) as defined in AS 2870:2011 (Ref. [7]) with anticipated characteristic surface ground movements of 20mm to 40mm. Clause 6.5.6.1 of this Geotechnical Completion Report may be used for expansive soil foundation design on Lots 101 to 108 and 116 to 119 inclusive:

Specific foundation design for expansive soils 6.5.6.1

Specific foundation design should be undertaken by a Chartered Professional Engineer familiar with the contents of this report and responsible for design of structural elements (including foundations) of the building.

The minimum specific design requirements set for expansive soils within this clause are:

- Minimum foundation embedment of 600 mm following topsoil i) removal and benching of building platform areas to finished ground levels
- ii) Four bar steel reinforcing cages should be used
- iii) For buildings having brittle exterior cladding, for example brick veneer, stucco plaster, solid plaster, block work, styrofoam type cladding or sprayed plaster over harditex systems etc, the potential effects of seasonal ground movements need to be considered by the building designer.

The above minimum requirements within this clause may be superceded if individual engineers are able to demonstrate their specific design solutions are applicable to site soil conditions to the satisfaction of Auckland Council. Specific design may be undertaken by first principles or by reference to AS 2870:2011 (Ref. [7]), Section 4 and related documents.

Expansive soils - Lots 109 & 115 6.5.7

Due to the presence of expansive clay soils, foundation soils lie outside the definition of 'good ground' in NZS 3604:2011 (Ref. [8]). Soils on these Lots are considered to lie in Site Class H1 (highly expansive) as defined in AS 2870:2011 (Ref. [7]) with anticipated characteristic surface ground movements of 40mm to 60mm. Clause 6.5.7.1 of this Geotechnical Completion Report may be used for expansive soil foundation design on Lots 109 and 115:

6.5.7.1 Specific foundation design for expansive soils

Specific foundation design should be undertaken by a Chartered Professional Engineer familiar with the contents of this report and responsible for design of structural elements (including foundations) of the building.

The minimum specific design requirements set for expansive soils within this clause are:

- iv) Minimum foundation embedment of 750 mm following topsoil removal and benching of building platform areas to finished ground levels
- v) Four bar steel reinforcing cages should be used
- vi) For buildings having brittle exterior cladding, for example brick veneer, stucco plaster, solid plaster, block work, styrofoam type cladding or sprayed plaster over harditex systems etc, the potential effects of seasonal ground movements need to be considered by the building designer.

The above minimum requirements within this clause may be superceded if individual engineers are able to demonstrate their specific design solutions are applicable to site soil conditions to the satisfaction of Auckland Council. Specific design may be undertaken by first principles or by reference to AS 2870:2011 (Ref. [7]), Section 4 and related documents.

6.5.8 Expansive soils – Lots 110 to 114

Due to the presence of expansive clay soils, foundation soils lie outside the definition of 'good ground' in NZS 3604:2011 (Ref. [8]). Soils on these Lots are considered to lie in Site Class H2 (highly expansive) as defined in AS 2870:2011 (Ref. [7]) with anticipated characteristic surface ground movements of 50mm to 75mm. Clause 6.5.8.1 of this Geotechnical Completion Report may be used for expansive soil foundation design on Lots 110 to 114 inclusive:

6.5.8.1 Specific foundation design for expansive soils

Specific foundation design should be undertaken by a Chartered Professional Engineer familiar with the contents of this report and responsible for design of structural elements (including foundations) of the building.

The minimum specific design requirements set for expansive soils within this clause are:

- vii) Minimum foundation embedment of 900 mm following topsoil removal and benching of building platform areas to finished ground levels
- viii) Four bar steel reinforcing cages should be used
- ix) For buildings having brittle exterior cladding, for example brick veneer, stucco plaster, solid plaster, block work, styrofoam type

cladding or sprayed plaster over harditex systems etc, the potential effects of seasonal ground movements need to be considered by the building designer.

The above minimum requirements within this clause may be superceded if individual engineers are able to demonstrate their specific design solutions are applicable to site soil conditions to the satisfaction of Auckland Council. Specific design may be undertaken by first principles or by reference to AS 2870:2011 (Ref. [7]), Section 4 and related documents.

6.5.9 Floor Slab Construction

Slab on grade construction is expected to be relatively straightforward across the subdivision, but problems can occur with slab construction on shrink/swell sensitive soils. In soils which become desiccated in summer, subsequent capillary moisture rise may cause dry soils to wet up and swell, causing slab uplift and building distress. Alternatively, construction during winter may result in subgrade soils with high moisture contents drying out through summer, with subsequent soil shrinkage and possible building deformation.

The structural engineer should take likely construction timeframes into account and confirm that their design and construction methodologies will accommodate the soil shrinkage or swelling that may occur.

The Contractor should ensure that the ground beneath the floor slab areas is suitably conditioned to ensure that the subgrade is neither too dry nor too wet prior to hardfill placement and concrete pouring to avoid undue shrink or swell movements.

6.5.10 Building maintenance - Owners responsibility

The owner is responsible for maintenance of the building and site and should be familiar with the performance and maintenance requirements set out in CSIRO sheet BTF18 Foundation Maintenance and Footing Performance: A Home Owners Guide. A copy of this sheet is included in Appendix D.

6.5.11 Retaining walls / Earthworks

No retaining wall construction in excess of 1.5 metres height and no earthworks involving fills in excess of 600mm depth should take place on these Lots unless endorsed by a suitable design undertaken by a Chartered Professional (Geotechnical) Engineer familiar with the contents of this report and responsible for design of structural elements of the building.

6.6 Underfill (Subsoil) drainage

Tonkin & Taylor Ltd

Underfill (Subsoil) drains have been installed during subdivisional development in the locations shown on the Woods Shear Key, Undercuts & Subsoil Drains As-Built Plan (Woods Ref 37001–02B–120–AB) in Appendix A1, and on T+T Drawing 21854.0037–APP7S2B–102 in Appendix A2. These drains are considered to be maintenance free. This drainage system is relatively deep and located so that it is unlikely to be encountered during future residential site development. Although future works are unlikely to encounter the drains, their location should be considered prior to designing deep foundations and, if damaged, repairs should be observed by a Chartered Professional (Geotechnical) Engineer familiar with this report, and notified to Auckland Council.

6.7 Stormwater and Sanitary Sewer Lines

Where building envelopes lie adjacent to or across service lines, all foundations should extend and be founded below the 45 degree zone of influence line extending from pipe inverts. This requirement is to avoid excessive pipe surcharges, and to allow for future maintenance of the system without detrimentally affecting adjacent structures. Subject to approval from Auckland Council, foundations may extend and bridge over service lines provided specific foundation design is undertaken. A copy of the stormwater as-built plans are included in Appendix A1.

6.8 Road and Access Lots

Based on the fill monitoring and site observations undertaken during site development, the filled and natural ground within Arran's Point Precinct 7, Stage 2B is considered generally suitable for residential road and accessway construction. Scala penetrometer testing should be undertaken when road subgrades have been prepared to confirm subgrade strengths. Subject to such subgrade testing, for future road construction in other parts of the Arran's Point Precinct 7 Stage 2B development, within natural ground, a design CBR of 2% is considered appropriate, while within engineered fill areas, a design CBR of 7% is appropriate.

6.9 Unexpected ground conditions

Our assessment is based on interpolation between borehole positions, site observations and periodic earthworks control visits. Local variations in ground conditions may occur. Although unlikely, unfavourable ground conditions may be encountered during site benching and footing excavations. It is important that we be contacted in this eventuality, or in the event that any variation in subsoil conditions from those described in the report are found. Design assistance is available as required to accommodate any unforeseen ground conditions present.

7 Applicability

This report has been prepared for the benefit of WFH Properties Ltd with respect to the particular brief given to us and it may not be relied upon in other contexts or for any other purpose without our prior review and agreement.

It does not remove the necessity for the normal inspection of foundation conditions at the time of erection of any dwelling, especially in cases where concrete blockwork and/or brick veneer or stucco plaster buildings are sited partly on fill or partly on natural ground, or where they are entirely sited on filling whose depth changes significantly across the building platform.

Tonkin & Taylor Ltd

Report prepared by:

Authorised for Tonkin & Taylor Ltd by:

Andrew Linton

Senior Geotechnical Engineer

Andrew Stiles

Project Director

IVVI

p:\21854\21854.0037 - arrans hill p7\gcr\stage 2b\jxxl.070508.app7s2b-gcr.docx

8 References

- [1] Tonkin & Taylor Ltd., October 2001. Stoney Block, T+T Ref. 18214.
- [2] Tonkin & Taylor Ltd., May 2001. Silverdale Blocks, Silverdale, Geotechnical Issues Future Medium Density Development, T+T Ref. 18213.
- [3] Tonkin & Taylor Ltd., November 2003. Silverdale North and Orewa West Blocks, Silverdale, Geotechnical Issues Future Medium Density Development, T+T Ref. 20914.
- [4] Tonkin & Taylor Ltd., November 2011. *Millwater North Bridge, Southern Abutment, Geotechnical Investigation Report*, T+T Ref. 21854.012.
- [5] Tonkin & Taylor Ltd., November 2013. *Millwater Subdivision, Arrans Hill Precinct 7 Geotechnical Investigation Report,* T+T Ref. 21854.0037.
- [6] New Zealand Standards, 1989. NZS 4431:1989 Code of Practice for Earth Fill for Residential Development.
- [7] Standards Australia, 2011. AS 2870:2011 Residential slabs and footings.
- [8] New Zealand Standards, 2011. NZS 3604:2011 Timber Framed Buildings.

Appendix A1: Woods Drawings

37001–02B–100–AB
 Final Contour As–Built Plan
 37001–02B–110–AB
 Cut & Fill As–Built Plan - Lowest to Subgrade
 37001–02B–111–AB
 Cut & Fill As–Built Plan - Original to Subgrade
 37001–02B–120–AB
 Shear Key, Undercuts & Subsoil Drains As–Built Plan
 37001–02B–300–AB to –303
 Stormwater Drainage As-Built Plans

Appendix A2: T+T Drawings

21854.0037–APP7S2B–100 Drawing List and Site Location Plan
 21854.0037–APP7S2B–101 Geotechnical Works Plan
 21854.0037–APP7S2B–102 Geotechnical Works Subsoil Drain Plan
 21854.0037–APP7S2B–103 Geological Cross Sections 1 & 2
 21854.0037–APP7S2B–104 1(V):1.5(H) RE Slope Typical Details (1 of 2)
 21854.0037–APP7S2B–105 1(V):1.5(H) RE Slope Typical Details (2 of 2)
 21854.0037–APP7S2B–110 Building Limitation Plan

WFH PROPERTIES LTD RESIDENTIAL SUBDIVISION MILLWATER-ARRANS POINT PRECINCT 7 (STAGE 2B) Completion Report Issue

DRAWING

Rev Title

GENERAL

• 21854.0037-APP7S2B-100 Drawing List and Location Plan Geotechnical Works Plan 21854.0037-APP7S2B-1011

 21854.0037-APP7S2B-102 Geotechnical Works Subsoil Drain Plan

21854.0037-APP7S2B-1031 Geolgical Cross Sections 1 & 2

1(V):1(H) RE Slope Typical Details (Sheet 1 of 2) 21854.0037-APP7S2B-104

1(V):1(H) RE Slope Typical Details (Sheet 2 of 2) 21854.0037-APP7S2B-105

• 21854.0037-APP7S2B-110 1 **Building Limitation Plan**

APPENDIX E

 21854.0037-APP7S2B-111 Post Earthworks Investigation Plan Earthworks Testing Location Plan • 21854.0037-APP7S2B-112 1

• Denotes drawing this issue: 13/07/2017

Street map sourced from Land Information New Zealand data (Crown Copyright Reserved).

LOCATION PLAN

A3 SCALE 1:5000 50 100 150 200 250 (m)

᠋ᠯᡶᠯᠯ Tonkin+Taylor

105 Carlton Gore Road, Newmarket, Auckland Tel. (09) 355 6000 Fax. (09) 307 0265 www.tonkintaylor.co.nz

DRAWING STATUS: COMPLETION REPORT

WFH PROPERTIES LTD RESIDENTIAL SUBDIVISION

MILLWATER - ARRANS POINT PRECINCT 7 (STAGE 2B)

Drawing List and Location Plan SCALES (AT A3 SIZE) DWG. No. 1: 5000 21854.00

DWG, №. 2 1854.0037—APP7S2B—100 1

		DESIGNED :	JXXL	May. 17	NOTES :	
Г		DRAWN :	JC	May. 17		
_		DESIGN CHECKED :			1	
H		DRAFTING CHECKED :	Ju		1	
-		CADFILE: \\21854.0037-APP7	S2B- 1	100.dwg	dwg	
		APPROVED : NOT FOR CONSTR	APPROVED : NOT FOR CONSTRUCTION			
1	Completion Report Issue	This drawing is not to be used f	This drawing is not to be used for construction			

BY DATE

REVISION DESCRIPTION

REFERENCE :

L:\21854\21854.0037 - Arrans Point Predinct 7\CAD\STAGE 2\GCR\STAGE 2B\21854.0037-APP7S2B-102.dwg, 102, 7\07\2017 11:25:16 a.m.,

SLOPE HEIGHTS	GE ₁	OGRID REQUIREMEN	TS
(m)	Height above slope toe (m)	Geogrid Length (m)	Geogrid Type
8.0	0.0, 2.0, 4.0, 6.0	12.0	Miragrid GX 60/30 (Primary)
	0.5, 1.0, 1.5, 2.5, 3.0, 3.5, 4.5, 5.0, 5.5, 6.5, 7.0, 7.5	2.0	Tensar SS20 (Secondary)
7.0	0.0, 2.0, 4.0	7.0	Miragrid GX 60/30 (Primary)
	0.5, 1.0, 1.5, 2.5, 3.0, 3.5, 4.5, 5.0, 5.5, 6.0, 6.5	2.0	Tensar SS20 (Secondary)
6.0	0.0, 2.0, 4.0	5.0	Miragrid GX 60/30 (Primary)
	0.5, 1.0, 1.5, 2.5, 3.0, 3.5, 4.5, 5.0, 5.5	2.0	Tensar SS20 (Secondary)
5.0	0.0, 2.0	5.0	Miragrid GX 60/30 (Primary)
	0.5, 1.0, 1.5, 2.5, 3.0, 3.5, 4.0, 4.5	2.0	Tensar SS20 (Secondary)

1(V): 1(H) RE SLOPE 4 TYPICAL DETAILS (LOT 105 TO 108)
SCALE 1: 100

5 (m)

Tonkin+Taylor

105 Carlton Gore Road, Newmarket, Auckland Tel. (09) 355 6000 Fax. (09) 307 0265 www.tonkintaylor.co.nz

DRAWING STATUS: COMPLETION REPORT

WFH PROPERTIES LTD RESIDENTIAL SUBDIVISION

MILLWATER — ARRANS POINT PRECINCT 7 (STAGE 2B)

1(V): 1(H) RE Slope Typical Details (Sheet 2 of 2)

SCALES (AT A3 SIZE)

AS SHOWN

2 1854.0037—APP7S2B—105 1

A3 SCALE 1: 100

Appendix B: Contractors Certificates

- Hick Bros Producer Statement PS3 Contract 37000-02 (Stage 1 Bulk Earthworks)
- Hick Bros Producer Statement PS3 Contract 37001-02 (All Stage 2 Civil works)

PS3 - FORM OF PRODUCER STATEMENT- CONSTRUCTION

ISSUED BY: HICK BROS CIVIL CONSTRUCTION LIMITED

TO: WFH PROPERTIES

IN RESPECT OF: PRECINT 7 OREWA WEST BULK EARTHWORKS AND GEOTECHNICAL

REMEDIATION

AT: PRECINCT 7 CONTRACT 37000-02

HICK BROS CIVIL CONSTRUCTION LTD has contracted to WFH PROPERTIES to carry out and complete certain building works in accordance with a contract, titled PRECINT 7 OREWA WEST BULK EARTHWORKS AND GEOTECHNICAL REMEDIATION ("the contract")

I JAMES BILKEY a duly authorized representative of HICK BROS CIVIL CONSTRUCTION LIMITED believe on reasonable grounds that HICK BROS CIVIL CONSTRUCTION LIMITED has carried out and completed all of the earthworks in Stage 2 as specified in the attached particulars of the contract works in in accordance with the contract.

Date: 4 August 2016

(Signature of Authorized Agent on behalf of)

HICK BROS CIVIL CONSTRUCTION LIMITED (Contractor)

42 FORGE ROAD, SILVERDALE

(Address)

PS3 - FORM OF PRODUCER STATEMENT- CONSTRUCTION

ISSUED BY: HICK BROS CIVIL CONSTRUCTION LIMITED

TO: WFH PROPERTIES

IN RESPECT OF: PRECINT 7 OREWA WEST STAGE 1 & 2 CIVIL WORKS

AT: PRECINCT 7 CONTRACT 37001-02

HICK BROS CIVIL CONSTRUCTION LTD has contracted to WFH PROPERTIES to carry out and complete certain building works in accordance with a contract, titled PRECINT 7 OREWA WEST STAGE 1 & 2 CIVIL WORKS ("the contract")

I JAMES BILKEY a duly authorized representative of HICK BROS CIVIL CONSTRUCTION LIMITED believe on reasonable grounds that HICK BROS CIVIL CONSTRUCTION LIMITED has carried out and completed all of the works in Stage 2 as specified in the attached particulars of the contract works in in accordance with the contract.

Date: 10th, January 2017

(Signature of Authorized Agent on behalf of)

HICK BROS CIVIL CONSTRUCTION LIMITED

(Contractor)

42 FORGE ROAD, SILVERDALE

(Address)

Appendix C: NZS 3604:2011 Expansive Soils

(Extract)

NZS 3604:2011 Expansive Soils (Extract)

Expansive soils tend to be moderately to highly plastic clays that undergo appreciable volume change upon changes in moisture content. Technically, they are defined in NZS 3604:2011 as those soils having a liquid limit of more than 50% and a linear shrinkage of more than 15%. Where soils are quite silty or sandy, shrink and swell is less of a problem, due to the lower clay contents.

Building damage resulting from expansive soil movement can range from relatively minor brick veneer cracking and internal cracking on wall corners and wall ceiling corners with attendant door and windows jamming, through to extensive cracking of foundation block framework, extensive internal visual cracking and significant warping of building frames. Damage is dependent on building construction and materials and is rarely of structural concern.

NZS 3604:2011 "Timber Framed Buildings" defines good ground as follows:

"Any soil or rock capable of permanently withstanding an ultimate bearing capacity of 300 kPa (i.e. an allowable bearing pressure of 100 kPa using a factor of safety of 3.0), but excludes:

- a) Potentially compressible ground such as topsoil, soft soils such as clay which can be moulded easily in the fingers, and uncompacted loose gravel which contains obvious voids;
- b) Expansive soils being those that have a liquid limit of more than 50% when tested in accordance with NZS 4402 Test 2.2, and a linear shrinkage of more than 15% when tested in accordance with NZS 4402 Test 2.6, and
- c) Any ground which could forseeably experience movement of 25 mm or greater for any reason including one or a combination of: land instability, ground creep, subsidence, seasonal swelling and shrinking, frost heave, changing ground water level, erosion, dissolution of soil in water, and effects of tree roots."

Foundations on expansive soils are outside the scope of NZS 3604:2011 as an acceptable solution to the New Zealand Building Code (NZBC). Specific engineering design of foundation elements is involved where expansive soils are present with a recommendation that AS 2870:2011 is used for building design. While not mandatory, AS 2870 designs will allow for a non-specific design foundation to be used without resorting to further ongoing investigation or design.

This geotechnical completion report has classified the soils present on this subdivision to be in Site Class M to H2 as per the requirements of AS 2870:2011. Descriptions of the various site classes, together with characteristic surface ground movements are outlined below.

Allowing for some correlation with NZS 3604, the various site classes applicable to NZ conditions are considered to be:

Characteristic Surface Movements	Site Class	Description
a) 20 mm (Note NZS 3604:2011 assumes movement of 25 mm as part of underlying design.	Class A (sand) and/or Class S (Silts) Equivalent to NZS 3604:2011 "Good Ground" sites	Poor to slightly expansive
b) 20 mm – 40 mm c) 40 mm – 60 mm d) 60 mm – 75mm e) > 75 mm	Class M Class H1 Class H2 Class E	Moderately expansive Highly expansive Highly expansive Extremely expansive

AS 2870 uses a range of factors to assess characteristic soil movement including:

- i. Building distress due to ground movement visible on adjacent structures,
- ii. Known soil properties and site specific testing to determine the shrink / swell index of a soil (Test 7.1.1 in AS 1289 Methods of Testing Soils for Engineering Purposes).

AS 2870 is based on defining soil types into various hazard classes based on expected surface movement and depth of desiccation that could occur. It then applies various foundation designs and embedment depths based on the form of building construction (slab on ground, strip footing, stiffened raft, stiffened slab with deep edge beams, etc). AS2870 uses more reinforcing steel than NZ designs generally would to create stiffer foundations that are better able to tolerate ground movement.

The Australian approach also regards expansive soil to a considerable extent being a home owner maintenance issue and significant emphasis is put into ensuring that people understand the influence that trees and dry summers etc may have on foundation performance. See Appendix D.

Appendix D: CSIRO – BTF18 – Foundation

Maintenance and Footing

Performance: A Homeowners Guide

Foundation Maintenance and Footing Performance: A Homeowner's Guide

BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups—granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its
 foundation soil, as a result of compaction of the soil under the
 weight of the structure. The cohesive quality of clay soil mitigates
 against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take place because of the expulsion of moisture from the soil or because of the soil's lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after construction, but has been known to take many years in exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES
Class	Foundation
A	Most sand and rock sites with little or no ground movement from moisture changes
S	Slightly reactive clay sires with only slight ground movement from moisture changes
M	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes
H	Highly reactive clay sites, which can experience high ground movement from moisture changes
E	Extremely reactive sites, which can experience extreme ground movement from moisture changes
A to P	Filled sites
P	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise

Tree root growth
Trees and shrubs that are allowed to grow in the vicinity of footings
cars cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- · Differing compaction of foundation soil prior to construction.
- · Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

पुरसके बच्चा द्वापक स्पृत्याहरू है बच्ची द्वापहरू

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The ner result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points, It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or crosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.

It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS Approximate crack width Description of typical damage and required repair Damage limit (see Note 3) category <0.1 mm 0 Hairline cracks 1 <1 mm Fine cracks which do not need repair 2 Cracks noticeable but easily filled. Doors and windows stick slightly <5 mm Cracks can be repaired and possibly a small amount of wall will need 5-15 mm (or a number of cracks 3 to be replaced. Doors and windows stick. Service pipes can fracture. 3 mm or more in one group) Weathertightness often impaired Extensive repair work involving breaking-out and replacing sections of walls, 4 15-25 mm but also depend especially over doors and windows. Window and door frames distort. Walls lean on number of cracks or bulge noticeably, some loss of bearing in beams. Service pipes disrupted

should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paying should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory allments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs
State departments overseeing agriculture can give information
regarding root patterns, volume of water needed and safe distance
from buildings of most species. Botanic gardens are also sources of
information. For information on plant roots and drains, see Building
Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory, it is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia
Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au
Email: publishing.seles@osiro.au

Appendix E: Test Results

21854.0037—APPP7S2B—111

Post Earthworks Investigation Plan

21854.0037—APPP7S2B—112

Earthworks Testing Location Plan

- Soil Expansion Test Results
- Post Earthworks Investigation Borehole Logs HA1 to HA6
- Earthworks Test Results

L:\21854\21854.0037 - Arrans Point Precinct 7\(CAD\STAGE 2\GCR\STAGE 28\21854.0037 - APP7S2B-111.dwg, 111, 7\)06\2017 4:23:31 p.m.

Our Ref: 1003363.0000.0.0/Rep 1 Customer Ref: 21854.0037 10 July 2017

Tonkin & Taylor PO Box 5271, Wellesley Street, Auckland 1141

Attention: Andrew Linton

Dear Andrew

Arran Point, Precinct 7, Stage 2B, Millwater **Laboratory Test Report**

Samples from the above mentioned site have been tested as received and according to your instructions. Test results are included in this report.

Samples destroyed during testing.

Please reproduce this report in full when transmitting to others or including in internal reports.

If we can be of any further assistance, feel free to get in touch. Contact details are provided at the bottom of this page.

GEOTECHNICS LTD

Report prepared by:

Sim Tirunahari I am the author of this document 2017.07.10 14:26:50 +12'00'

Sim Tirunahari Soils Laboratory Manager

..........

Report checked by:

2017.07.10 17:02:33 +12'00'

Steven Anderson Regional Manager Approved Signatory

This document consists of 3 pages

10-Jul-17

t:\geotechnicsgroup\projects\1003363\issueddocuments\app7s2b\20170710.st.app7_stg2b_millwater.rep1.docx

Authorised for Geotechnics by:

Steven Anderson

Steven Anderson **Project Director Approved Signatory**

GEOTECHNICS

23 Morgan Street, Newmarket Auckland 1023, New Zealand

p. +64 9 356 3510w. www.geotechnics.co.nz

Site: Arran Point, Precinct 7, Stage 2B, Millwater

Page 1 of 2

Your Job No: 21854.0037 Our Job No: 1003363.0000.0.0

Test Method Used: AS 1289.7.1.1 - 2003 Determination of the Shrink - Swell Index

		The second secon						The second secon
			SUMMARY OF	OF SHRINK - SWELL TEST RESULTS	TEST RESULTS		10	
Sample No.:			1	1	2	2	က	က
DEPTH		(m)	0.5	1.0	0.5	1.0	0.5	1.0
Applied Pressure	ıre	(кРа)	55	55	55	55	55	55
	Initial Water Content	(%)	32.9	31.3	33.9	31.9	53.0	54.2
SWELL	Bulk Density	(t/m³)	1.81	1.82	1.81	1.87	1.68	1.66
TEST	Dry Density	(Vm³)	1.36	1.39	1.35	1.42	1.10	1.08
2	Final Water Content	(%)	34.3	34.1	35.5	33.0	55.0	56.1
2	Swelling Strain	(%)	0.14	0.09	0.03	0.04	0.31	0.26
	Initial Water Content	(%)	30.4	32.4	34.8	32.3	53.5	52.0
	Estimated Shrinkage Limit	(%)	10.9	10.7	9.9	11.8	15.4	25.3
SHRINKAGE	Shrinkage Strain	(%)	2.8	5.3	5.6	6.2	10.6	10.2
TEST	Inert Material Estimate in the Soil Specimen	(%)	0	0	0	0	0	0
	Soil Crumbling During Shrinkage	Je	Nii	Nii	Nii	Νil	Nil	Nii
	Cracking of the Shrinkage Specimen	simen	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate
SHRINK - SWELL INDEX	LL INDEX	(%)	1.6	3.0	3.1	3.4	0.9	5.8

Remarks: The test results are IANZ accredited.

Entered by: JK

Date: 10/07/2017

Checked by:

21

Date: 10/07/2017

23 Morgan Street, Newmarket Auckland 1023, New Zealand

p. +64 9 356 3510w. www.geofechnics.co.nz

Site: Arran Point, Precinct 7, Stage 2B, Millwater

Page 2 of 2

Your Job No: 21854.0037 Our Job No: 1003363.0000.0.0

Test Method Used: AS 1289.7.1.1 - 2003 Determination of the Shrink - Swell Index

			SUMMARYO	JE SHRINK - SWELL TEST RESULTS	TEST RESULTS			
Sample No.:			4	4	5	*9	9	9
рертн		(m)	0.5	1.0	0.5	%1°0	0.5	1.0
Applied Pressure	ıre	(kPa)	55	55	55	55	55	22
	Initial Water Content	(%)	30.6	12.8	35.8	41.0	29.4	33.7
SWELL	Bulk Density	(t/m³)	1.87	1.82	1.83	1.68	1.90	1.83
TEST	Dry Density	(t/m³)	1.43	1.61	1.35	1.19	1.47	1.37
	Final Water Content	(%)	32.5	14.7	37.4	42.9	30.8	34.9
	Swelling Strain	(%)	0.46	0.18	0.36	-0.01	0.28	0.14
	Initial Water Content	(%)	32.3	32.3	35.6	28.2	35.6	29.0
	Estimated Shrinkage Limit	(%)	11.8	15.8	24.1	17.2	24.5	19.5
SHRINKAGE	Shrinkage Strain	(%)	5.7	6.1	4.5	2.0	4.6	1.9
TEST	Inert Material Estimate in the Soil Specimen	(%)	0	0	0	0	0	0
	Soil Crumbling During Shrinkage	ge	Nil	N.	Nil	Nii	Nii	Nil
	Cracking of the Shrinkage Specimen	cimen	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate
SHRINK - SWELL INDEX	LL INDEX	(%)	3.3	3.5	2.6	*0.4	2.7	1.1
		1	100 AM 100 COOK AND	CONTRACTOR	ACTIVITIES FOR MAIN AND	The same and the s	and the same of th	

Shrinkage Test: *Sample No.5_1.0m: Sample height to diameter ratio is less than the required 1.5. We have advised the engineer and it was decided to continue with the testing.

Therefore the test results reported are not IANZ accredited.

Remarks: The test results are IANZ accredited.

Entered by: JK

Date: 10/07/2017

Checked by: 51

Date:

10/07/2017

BOREHOLE No.: STG2B-HA01

PROJECT: Arran poi	nt s	tage	э 3			***************************************				LOC	ATIO	N: Arra	an Po	int, Millwa	ater	JOB No.: 21854.0037/s3
CO-ORDINATES:										DRIL	L TYPI	E: 50n	nm Ha	nd Auger		HOLE STARTED: 01/05/2017
R.L.:				*						DRIL	L MET	HOD:	HA			HOLE FINISHED: DRILLED BY: Geotechnics
DATUM:										DRIL	L FLUI	D:				LOGGED BY: RBE CHECKED: AJL
GEOLOGICAL									15				NU	EN	GINE	ERING DESCRIPTION
GEOLOGICAL UNIT, GENERIG HAVE,															c)	*
ORIGIN, MATERIAL COMPOSITION.	SS FLUID LOSS (%)	WATER	CORE RECOVERY (%)	МЕТНОВ	CASING	TESTS	SAMPLES	צר (ש)	DЕРТН (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTHIDENSITY CLASSIFICATION	10 20 50 50 100 (RPa) 200	1 COMPRESSIVE 22 STRENGTH 50 (MPa)	20 DEFECT SPACING 200 (cm) 2000	Description and Additional Observations
Topsoil				500						TS TS	М	Н.			11111 11111 11111 11111 11111	SILT, non plastic, moist, dark brown
						● >211 kPa					M-W	VSt-H				clayey SILT, medium to low plasticity, wet, grey and yellowish brown, AND; SILT, non plastic, moist, greyish brown and yellowish brown
Fill						● 193/93 kPa		5								
						● 154/89 kPa			1 -							×
						● >211 kPa						St-VSt				SILT, non plastic, moist, light brownish white
						● 124/- kPa ● 69/20 kPa			12	- × × × - × × - × ×						
Residual Soil						● 124/33 kPa		18	2 -	* * * * * * * * * * * * * * * * * * *	.5					1.70m: changes to SILT with some clay, moist to wet
						● 63/21 kPa				* * * * * * * * * * * * * * * * * * *	М	Sı		111111		CILT come also lovets as plantisity maint associate
						● 69/24 kPa			// 2*	* * * * * * * * * * * * * * * * * * *	141	S.				SILT, some clay, low to no plasticity, moist, grey
Weathered East Coast Bays Formation						● 89/29 kPa			10	* * * * * * * * * * * * * * * * * * *						
		DRY 01/05/2017				● 89/30 kPa			3 -	* * * * * * * * * * * * * * * * * * *						
COMMENTS:									34 34 34	-						3.2m: Target depth

BOREHOLE No.: STG2B-HA02

PROJECT: Arran po	int st	tage	e 3							LOC	ATIO	V: Arra	an Po	int, Millwate	er JOB No.: 21854.0037/s3
CO-ORDINATES:														nd Auger	HOLE STARTED: 01/05/2017 HOLE FINISHED:
R.L.:												HOD:	HA		DRILLED BY: Geotechnics
DATUM:	Ť							- 0		DRILI	L FLUI	D:		ENC	LOGGED BY: RBE CHECKED: AJL
GEOLOGICAL GEOLOGICAL UNIT,	-					Î	Т			-				ENG	INEERING DESCRIPTION
GENERIC NAME, CRICIEN, MATERIAL COUPOSITION.	25 50 75 75 75	WATER	CORE RECOVERY (%)	МЕТНОО	CASING	TESTS	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	25 SHEAR STRENGTH 55 SHEAR STRENGTH 100 (RPs)		Description and Additional Observations
Topsoil	388	W	ŏ	M	9	9	ià.	교		FLS TS	M	VSt	11111		SILT, non plastic, moist, dark brown
						● 140/36 kPa						St-VSt			SILT AND clayey SILT, low to no plasticity, moist, and yellowish brown,
						● 89/45 kPa			_						
						● 83/35 kPa		¥3	1 -						
Fill						96/38 kPa99/63 kPa									1.30m: inclusions of grey sandstone gravel
						● 92/30 kPa		-						111 111 111 111 111 111 111 111 111 11	clayey SILT, low to medium plasticity, moist, yellow brown with grey inclusions, weak sandstone inclus
			8			● 107/48 kPa			2 -						
W						● 152/47 kPa			-	****		VSt			SILT, non plastic, moist, dark grey
Weathered East Coast Bays						● 178/24 kPa			-	* * * * * * * * *	M-W	VSt-H			1.1.1
Formation		DRY 01/05/2017				● >211 kPa			3 -	* * * *	м	н			SILT, non plastic, moist, dark grey
40.30.200		01/05								* * *	sai.	905			111
								4				8			3.2m; Target depth
COMMENTS: ole Depth 3.2m cale t:20								8	25			#			

BOREHOLE No.: STG2B-HA03

PROJECT: Arran poir	nt sta	age	3							LOC	OITA	۷: Arra	an Po	int, Millwate	er JOB No.: 21854.0037/s3
CO-ORDINATES:										DRIL	_ TYPI	≣: 50n	nm Hai	nd Auger	HOLE STARTED: 10/05/2017 HOLE FINISHED:
R.L.:										DRIL	MET	HOD:	HA		DRILLED BY: Geotechnics
DATUM:										DRIL	. FLUI	D:			LOGGED BY: AG CHECKED: AJL
GEOLOGICAL	L,		_					7						ENGI	INEERING DESCRIPTION
GEOLOGICAL UNIT, GENERIC NAME,														5	
ORIGIN, MATERIAL COMPOSITION.	_		(%)			TESTS					MOISTURE WEATHERING	Ł	SHEAR STRENGTH (RPa)	COMPRESSIVE STRENGTH (MPa) DEFECT SPACING	Description and Additional Observations
	25 56 FLUID LOSS (%) 75		CORE RECOVERY (%)			IEGIG				99	WEA	STRENGTH/DENSITY CLASSIFICATION	HEAR ST	COMPRESSIVE STRENGTH (MPa) DEFECT SPA	
	EUD S	WATER	ORE REC	МЕТНОВ	CASING		SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	OISTURE	TRENGT	52852 8		888
Topsoil	2000	3	٥	M	Ö		ry.	α	-	ZY TS	M M	VSt	1111	111	SILT, non plastic, moist, dark brown
, opeon									-	× × ×		St-VSt			SILT minor clay, medium to low plasticity, moist, ligh
									-	* * *				111	grey mottled yellowish orange
					(● 159/88 kPa				* * *					01 113 113
								134	-	* * *					111
									11-	^ * * * *					0.60m: changes to; low plasticity
						● 103/50 kPa			2	* * *					
										^ × ×					11
										* * *					
					•	● 109/54 kPa			-	* * *					41 3.4 1.4
									1 -	* ** * *					11) 11) 81
									-	* * *					11 11 11
					•	■ 107/54 kPa				* * * * *					() () () ()
										* * *					1.40m: changes to; low to no plasticity
									-	* * *				111	41 11 11
					•	■ 104/51 kPa			4	× × ×					11 14 14
Residual Soil									-	* * *					(i) 11 11
(4										× × ×					111
						■ 115/54 kPa				* *×					1.90m: changes to; light greyish white mottled yellowish
										* * *					brown and orangey red
									2 -	× ××					11 11 11
						● 62/27 kPa			e e	* * *					11 11 11
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0	× × ×					11 E1
W.									6	* * * <u>*</u> *		SI			clayey SILT, low to medium plasticity, moist, light
					•	● 51/21 kPa			8	* * *					yellowish brown
									4	× × ×		F-St			SILT some clay, low plasticity, moist, light yellowish
									11	* * * *		100 108E4			brown mottled pink
					•	● 48/20 kPa			8	* * *					SILT trace clay, non plastic, moist, light yellowish
									(e	× × ×					brown mottled pink
n		117							7/2	* * * * * *					11
	>	10/05/2017			•	■ 56/24 kPa			з —	* * *		38			11
	:::: É	3 2	\dashv	+	+			X		* * .	- 12	-			3.1m: Target depth
									276						
									E-						7.1 1.1 1.1
a.									9						1) () ()
									-						11
									85						11 11 11
								i i	35		2.				71 11 11
									1.7						11
			::/						3.5						3.1 1.1 3.1
COMMENTS:										2 2 5			111111	1111111 (11)	(1)
Hole Depth															

BOREHOLE No.: STG2B-HA04

PROJECT: Arran poi	int st	age	9 3							LOC	ATIO	N: Arra	ın Poi	nt, Millwater	JOB No.: 21854.0037/s3
CO-ORDINATES:										DRILL	. MET	HOD:		nd Auger	HOLE STARTED: 10/05/2017 HOLE FINISHED: DRILLED BY: Geotechnics
DATUM: SEOLOGICAL	Т									DRILL	. FLUI	D:		ENICINI	LOGGED BY: RBE CHECKED: AJL
GEOLOGICAL GEOLOGICALUNIT,	\vdash	1				-				-				ENGIN	EERING DESCRIPTION
DELEMENTAME, ORIGIN, MATERIAL COMPOSITION.	SS FLUID LOSS (%)	WATER	CORE RECOVERY (%)	МЕТНОВ	CASING	r ton	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASS/FICATION	10 25 SHEAR STRENGTH 20 (KPa) 200	1 COMPRESSIVE 22 STRENGTH 400 (MPa) 22 COMPRESSIVE 23 COMPRESSIVE 24 COMPRESSIVE 25 COMPRESSIVE 26 COMPRESSIVE 27 COMPRESSIVE 28 COMPRESSIVE	Description and Additional Observations
Topsoil	488	-	0	2	0		o	Œ	- 0	21 ×	M	Н			SILT, non plastic, moist, dark brown
e c					● >211 kP ● >211 kP ● 152/96 k	a						VSt-H			SILT, non plastic, moist, yellow, AND; clayey SILT, lo plasticity, light brown with grey inclusions, occasiona sandstone inclusions clayey SILT, low plasticity, moist, yellowish brown, grey silt inclusions SILT, non plastic, moist, grey, with pieces of
					• UTP	«Pa			9 8						sandstone gravel, AND; clayey SILT, medium to low plasticity, yellowish brown clayey SILT, low plasticity, moist, yellowish brown,
Fill		>			• 152/84 k • 167/87 k				2 -						minor grey inclusions
					● 169/59 k				90 97 97 88		**				e a
		10/05/2017			• 184/102				3 -						
n 									3 3 5 2						3.1m: Target depth
OMMENTS:									2			S		11111	

BOREHOLE No.: STG2B-HA05

PROJECT: Arran poir	nt sta	age	3						LOC	IOITA	V: Arra	n Poi	nt, Millw	ater	JOB No.: 21854.0037/s3
CO-ORDINATES:		-											nd Auger		HOLE STARTED: 10/05/2017
									DRILL	MET	HOD: I	НА			HOLE FINISHED:
R.L.; DATUM:										_ FLUI					DRILLED BY: Geotechnics LOGGED BY: AG CHECKED: AJL
GEOLOGICAL									DRILL	LFLUI	U.	-	FN	IGINE	ERING DESCRIPTION
GEOLOGICAL UNIT,	П	-1	T			T	Ť							\OIIVE	LEINING BEGONII HON
GENERIC NAME, ORIGIN,				×						S S		H	ш	NCING	
MATERIAL COMPOSITION.	(%)		OY (%)		TESTS					MOISTURE WEATHERING	ΣHS.,	SHEAR STRENGTH (kPa)	COMPRESSIV STRENGTH (MPs)	DEFECT SPACING (cm)	Description and Additional Observations
	25 FLUID LOSS (%)		CORE RECOVERY (%)	2		w		Ê	9010	NG W	STRENGTHIDENSIN CLASSIFICATION	SHEAR	STR	DEF	
	25 FLUIC 75	WATER	CORE RI	METHOD	CASING	SAMPLES	RL (m)	DEPTH (m)	GRAPHICLOG	CONDITU	STRENG	58858	5 20 50 50 100 210	200000000000000000000000000000000000000	
Topsoil				_		1		-	\$6 A	М	Н			*****	SILT, non plastic, moist, dark brown
					6				₩		VSt-H				SILT some clay, non plastic, moist, yellowish brown mottled grey and brown, occasional gravel
									₩					11111	motiled grey and brown, occasional graver
					● >212 kPa				₩						2
									₩					11111	0.50m: changes to; moist to dry
								-	₩					11111	
					● 204/91 kPa				₩					11111	91
									888						0.80m: changes to; moist
														11111	The second seco
					● >212 kPa				$\otimes\!\!\!\otimes\!\!\!\!\otimes$						
					212.11.0		24	1 -	\bowtie						
Fill		-			10				\bowtie						
					0 - 040 l/D-				\bowtie					11111	
		-			● >212 kPa				\bowtie					11111	30
									888						
							ľ		$\otimes\!\!\!\otimes$						
25					● 148/79 kPa		ŀ	5 5							
									\bowtie						8
					*				₩					11111	
					• 194/91 kPa				₩						
						ŀ			₩					11111	6
								2 -	* * _*					11111	SILT minor clay, no to low plasticity, moist, orange,
					● >212 kPa				* * *					11111	mottled light grey
									* * *						
									* * *					11111	
					• 139/68 kPa				* * * * * *						
500 10000 Novine 501								8	× ××					11111	
Residual Soil									* * *					11111	2.70m: changes to; light grey mottled yellowish brown
			1		● 144/68 kPa				* * * * *	0				11111	2.70m. changes to, light grey motified yellowish brown
					144/00 KPa				* * *					11111	
(2)									* * * * *					11111	
9		10/05/2017			E 8 9				* ×						
en e	DRY	10/05			● 129/76 kPa			3 -	* * * * *					11111	
8														11111	3.1m: Target depth
									1						
									1						
								•	1					11111	
							137	()						11111	
#2 II					5 11									11111	
														11111	
														11111	
COMMENTS:	121		\perp			_								11111	
COMMENTS:															
3.1m															

BOREHOLE No.: STG2B-HA06

CO-ORDINATES: R.L.: DATUM: GEOLOGICAL GEOLOGICAL	WATER CORE RECOVERY (%) METHOD CASSING		DRILL TYPE: 50mm Hand Auger DRILL METHOD: HA DRILL FLUID: ENGIN ENGIN AUTORIO STATE S	
DATUM: GEOLOGICAL GEOLOGICAL UNIT, GRIERIC INAVE, ORIGINA MATERIAL COLPOSITION. REAL REAL REAL REAL REAL REAL REAL RE	WATER CORRECOVERV(%) METHOD CASHAG	Salvanaria (m) 18 (m)	DRILL FLUID: ENGINE MENANHERRING CONDITION M	DRILLED BY: Geotechnics LOGGED BY: RBE CHECKED: AJL NEERING DESCRIPTION Description and Additional Observations
DATUM: GEOLOGICAL GEOLOGICAL UNIT, GRIERIC INAVE, ORIGINA MATERIAL COLPOSITION. REAL REAL REAL REAL REAL REAL REAL RE	WAYTER CORE RECOVERY (%) METHOD CASING	Salvanaria (m) 18 (m)	A MORTURE (NEATHERNO COASHICATION (NEATHERNO COASHICATION (NEATHERNOTH)	LOGGED BY: RBE CHECKED: AJL NEERING DESCRIPTION Description and Additional Observations
GEOLOGICAL GEOLOGICAL UIIIT, GEORIFICO IAME, ORIGIN, MATERIAL COMPOSITION. RELAW. RELAW.	WAYTER CORE RECOVERY (%) METHOD CASSING	Salvanaria (m) 18 (m)	A MORTURE (NEATHERNO COASHICATION (NEATHERNO COASHICATION (NEATHERNOTH)	Description and Additional Observations
GEOLOGICAL UNIT, GENERIC TAME, ORIGIN, MATERIAL COMPOSITION. SE SOO ORIGINA REIE REIE REIE	WATER CORE RECOVERY (%) METHOD CASHIG	Salvanaria (m) 18 (m)	A MOISTILRE WEATHERING CONDITION WEATHERING CONDITION WEATHERINGTH CASSIFICATION STRENGTH CASSIFICATION CONTRIBUTED CONTRIBUTE	Description and Additional Observations
GRIERIC IMME, ORIGIN, ANTERNAL COMPOSITION.	WATER CORE RECOVERY (%) METHOD CASHG	Salvanaria (m) 18 (m)	TOHAGE CONSTRUCTION OF THE	03002
MATERIAL COMPOSITION. (E) SSO	CORE RECOVERY (%) METHOD CASSNG	Salvanaria (m) 18 (m)	TOHAGE CONSTRUCTION OF THE	03002
	WATER CORE RECOVER METHOD AMETHOD	Salvanaria (m) 18 (m)	TOHAGE CONSTRUCTION OF THE	03002
	WWYFRE CORE REC	-	THE SAME AND STATE OF THE SAME AND SAME	<u> </u>
	M 0 W 0	-	± 15 M VSt	<u> </u>
Topsoil		● 168/86 kPa	<u> </u>	
B		● 168/86 kPa	VSt-H	
		● 168/86 kPa	(XX)	clayey SILT, low plasticity, moist, yellowish brown,
		-	XXXI	AND; SILT, non plastic, moist, grey
			XX	
		-[XX	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				1
		● >211 kPa		1
		8-		1
		-		2
		● >211 kPa		SILT, non plastic, moist, grey, minor inclusions of
		1 -		yellowish brown clayey SILT
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				4 1 1
2.70.25 0.00.5 0.00.6 0.00.6 0.00.6				1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
		● 107/47 kPa	SI-VSt	SILT, non plastic, moist, greyish white and yellowish brown
1.71				i brown
1		25	⋙	1.50m: changes to; SILT some clay, grey and yellowish brown
		● 62/32 kPa		I DIOWII
Em line				1 3 4
FIII			D-M VSt	CILT you pleate do to maint valley leb brown
(1)		● 160/102 kPa	× · · · · · · · · · · · · ·	SILT, non plastic, dry to moist, yellowish brown
		- 100/102 ki a	XX	1.80m: changes to; moist, yellowish brown with grey inclusions
				inclusions
		2 -	₩ 	1
123		● 142/84 kPa	⋙ I I ■ⅡⅢⅢ	2.20m: changes to; inclusions of hard sandstone grave
1.00				1
			₩	clayey SILT, low plasticity, moist, yellowish brown,
112		● 136/72 kPa		inclusions of grey silt and sandstone gravel
				2
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0				1
10 (4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			XX	3 4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		● 139/54 kPa		1. 2.
				1 1
	2017			1 1 1
DRY	0/05/2	● 185/109 kPa 3 -		1
	-			2 Amer Townest dentile
0 (4 (4) 1 (2) (5) 1 (2) (5) 1 (2) (6) 1 (4) (6) 1 (4) (7)		1=		1
(2.5 (2.5) (2.5 (2.5) (2.5 (2.5) (2.5 (2.5) (2.5 (2.5) (2.5 (2.5) (2.5 (2.5) (2.5 (2.5)		1		T 6
17 (1) (1) 1 (2) (2) 1 (2) (3) 1 (3) (4) 2 (4) (4)				Î. 1. 1.
C G G G G G G G G G G G G G G G G G G G				T T
7 (1) (2) (2) (3) (3) (4) (4) (4)				1
- 12.2 11.2 12.2				1
1 (2.5) 1 (2.5) 1 (2.5)				1
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		1.7		1
1 0 0				1
OMMENTO		1 1 2 1		© I
OMMENTS:				İ
le Depth 3.1m				1

• • •	-	Ī	entire Id be # to																		Ĭ	,												-				T						1		
614089.032/1 YA	Page of		Comments These results have not yet passed our entire qualty assurance process. They should be used with caution and may be subject to change.																													•														
Job# Entered By: YA	Checked By:		pass / fail Specification > 140 kPa and < 10 % Air Voids)		4		۵		٥	_	۵	-	۵.		ሲ		p		L		_	•	,	۵	•	a,	ı	L	۵		•		D.		۵		a.		ď		۵		₽.		-	۵
			Re.						***																																				\Box	
			Average Shear Strength (kPa)		167		183	3	100	2	174	:	161		166		170		128	ļ	ì	182		175		203		5002	1.1		173		179		107		163		158		167		<u>5</u>	305	1	192
		ı		Test 4	205		205	}	424	:	20.5	3	202		188		200		138	ş	30	202		202		197		410	Ţ	5	188		202		103		154		188		188		154	200		205
1,0037			Shear Strength (kPa) (UTP = Unable to penetrate)	Test 3	171		154		121	=	Ę	:	180		170		92	;	145	00,	3	195		188		205	1	600	171	•	180		6		86		188		154		171		 45	206		205
Taylor 2185	-ster		Shear Stre	Test 1 Test 2	154		154	<u> </u>	137	2	73,	5	140		160		9	ļ.	154	137	5	175		154		205	-	<u> </u>	188	?	173		170		120		154	1	154		154		137	300	-	205
onkin & #:	densom	L		Test 1	137	:	127	<u>:</u>	55] 	3,	2	13	1	45	-	 ₹		£ .	ļ	<u> </u>	154		154		505		g	154	2	75		150		130		154	1	137		154	1	T	300		154
Client: Tonkin & Taylor T&T Job #: 21854,0037	ng a nuclear		Oven Calculated Air Voids (%)		4.5	6,4	4.4	4.3	0.0	0.0	5.8	6.2	,	1	3	,	. ,	3.1	3.0	3.6	3.6	,	'	1.8	1.9	5.5	2.7	2.6	2.9	2.9	6.0	1.2	,	٠,		1	0,4	=	3.1	3.2	3.0	2, 6	2.4	1.1	9'2	2.4
	y density usi	ear vane tes	Solid Density (t/m3) assumed		2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7						2.7	2.7	2.7	2.7			2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7		,	,		2.7	2.7	2.7	2.7	2.7	i c	2.7	2.7	2.7	2.7
œ	t and field dr ide	hand held sh	Oven Moisture content (%)		34.7	34.7	32.0	32.0	44.9	44.9	34.8	34.8	-		,		.	32.0	32.0	30.8	30,8	•	1	35.3	35.3	30.0	30.3	30.3	33,8	33.8	32.7	32.7		,	,		35,3	35.3	31.7	31.7	32.0	24.8	34.8	24.1	24.1	29.5
Job: Arran's Point Stage 2B	NZS 4407:1991 Field water content and field dry density using a nuclear densometer Test 4.2.1 Direct Transmission Mode	NZGS August 2001 Guidelines for hand held shear vane test	Nuclear Wet Oven Dry Density Density (t/m3) (t/m²)		1.33	1.33	1.38	1.39	1.23	1.23	1.31	1.31		,	1	F	1	1.20	1.40	1.42	1.42	1	1	1.36	1.35	1,41	1,45	1.45	1.37	1.37	1.42	1.42	1	1		,	1.38	1.37	1,41	1.41	141	1 36	1.36	1.52	1.51	1,43
Job: Arran's	VZS 4407:1991 Fest 4.2.1 Direct	VZGS August 20	Nuclear Wet Ov Density (t/m²)		1.79	1.79	1.83	1.83	1,79	1,79	1.77	1.76	r	1	,	,	-	1.85	1,85	1.86	1.86	c	ı	1.84	1.83	1.83	1.90	1.89	1.84	1.84	1.89	1.88			,		1.86	1.85	1.86	1.86	1.36	20, 50	1.83	1,89	1.88	38.
·		ľ	Date		24/11/2014		26/11/2011	1070	* 1000001	* 102211	*******	107/7	3/12/2014		5/12/2014		6/12/2014		8/12/2014		9/12/2014	8/12/2014		9/12/2014		9/12/2014		10/12/2014	40/12/2014	1077	11/1/2/2014		13/12/2014		14/01/2015		19/01/2015		20/01/2015		20/01/2015		20/01/2015	350075080	STORING	28/01/2015
		ŀ	Tech.		Y.		ć	<u> </u>	3	ţ	5	<u>-</u>	¥	1	¥	Ì	¥		¥.	:	É	Ā		¥	<u>.</u>	£	3	£	9	5	ď	í	\$		Ą	<u> </u>	¥	1	Ĭ		£		¥	4		¥
			Location		Bulk Farthworks		Dull Company	DOIN CHIMADINE	The fit of the state of the sta	DUIK CARITMOLES	in the contract of the contrac	DUIN Edi UIWOINS	Bulk Earthworks		Bulk Earthworks		Bulk Earthworks		Bulk Earthworks	i.	DUIK EALUNOIKS	Bulk Farthworks		Bulk Earthworks		Bulk Earthworks	:	Bulk Earthworks	Doile Contractor	Data Latinatina	Bulk Farthworks		Bulk Earthworks		Bulk frankworks		Bulk Earthworks		Bulk Earthworks		Bulk Earthworks		Bulk Earthworks	The Head of the Association of t	Duin Earliworks	Bulk Earthworks
			칲		23.22	7	22.00	6.57	200	80. 5	80 30	20.00	24.78		24.92				25.42	3	16.42			26.48		27.27		26.08	35.36	40,40	24 15	21.12	27.33					***************************************								
arker	21.		Northing		65111675 R44	100000	2110070 445	244.0790100	2240027	250.4.00150	200	156.1660155	6510678.549		6510679.66		1		6510659,087	000	200,000,000	,		6510658.774		6510657,062		6510676,675	6610E78 616	0100100100	8540689 563		6510664.278		,											
23 Morgan Sireet, Newmarket Auckland 1023, New Zealand	p. +64 9 356 3510 w. www.geotechnics.co.nz		Easting		2880294 49	2002007	924 3780	2000310.470	ord agreement	2660303.673	0 0340000	20000003	2660348,865		2660335,62		1		2660394.239		2000401.131	1		2660404,052	400441004	2660387.846		2660354	2660373 413	2000213.112	25E0410 857	1000110007	2660320.933					- -								
	SECTECHNICS		URN		244.10874	50.1.10	24.44.14	100		514-121/1	270	314-17117	\$14-133/1		S14-146		S14-149		S14-153/1		2/501-4-19	214-156		\$14-163/1	1001-100	\$14-163/2		S14-167/1	014 4 4 70777	7//01-10	MACA-PAS)	S14-187	5	X14-2501X	1000	\$14-290		\$14-294/1		\$14-294/2		S14-294/3	20000	1/000-410	\$14-333/2

23 Margan Street, Newmarket Auckland 1023, New Zealand p. +64 9 366 3510 w. www.geotechnics.co.nz

Client: Tonkin & Taylor
T&T Job #: 21854,0037
NZS 4407:1991 Field water content and field dry density using a nuclear densometer
Test 4.2.1 birect Transmission Mode
NZBS Ausuret 2001

614089.032/1 Page Job # Entered By: YA Checked By:

ģ

							NZGS August	i est 4.2.1 Direct Transmission moue NZGS August 2001 Guidelines for hand held shear vane test	woue or hand held sh	ear vane test								
URN	Easting	Northing	R	Location	Tech.	Date	Nuclear Wet	Nuclear Wet Oven Dry Density	Oven	Solid		S C	Tear Stren	Shear Strength (kPa)	\vdash	ige	pass / fail	
							Density (t/m³)		Moisture content (%)	(t/m3) assumed	Calculated Air Voids (%)	2		to penetrate	Strength (kPa)	gth Re-	> 140 kPa and t < 10 % Air	inese results have they type passed out mine quality assurance process. They should be used with caution and may be subject to change.
												Test 1	Test 2	Test 3 Test 4	4 #			
33071				Reife Farthamrks	4	29/01/2015	1.87	1,40	33.8	2.7	6.0	137	188	171 20	205 175		۵	
1,000-10					<u> </u>		1.87	1.39	33.8	2.7	1.3			1	4			
044 33070				Bully Harthworks	J	20/04/2015	1.87	1.43	31.5	2.7	2.3	205	205	20.5	205		۵	
7,000				2000	1		1.86	1,41	31.5	2.7	3.2				_			
				L W	5	a receiped to	1,80	1.26	42.5	2.7	0.0	,,,	145	437	797		O	
514-349/1				Blik Earthworks	ź	\$102/10/05	1.79	1,26	42.5	2.7	1.0	=	ŧ:	\dashv	_			-
0000				in the second	Š	30,04,1904.5	1.83	1.42	28.9	2.7	5,5	145	428	145	143		Δ	
514-348/2				BUIK EARTINOTES	É	30,0172013	1,83	1.42	28.9	2.7	6.4	?	9			_		
					:		1.84	1.32	39,5	2,7	0.0	1	1	├	L		٠	
S14-355/1				Bulk Earthworks	£	2702/2015	1.83	1.31	39.5	2.7	0.0	77	3	13/		_	L	
9				the state of the s	Š	2 to Crown	1.77	1.38	28.8	2.7	9.3	100	137	34 /24	188 450	_	٥	
2/665-419				DUIK CALUIWOINS	£	61022013	1.78	1.38	28.8	2.7	9.1	3	<u> </u>	_		,		
\$14-359/1				Bulk Earthworks	Ą	3/02/2015	1.93	1.47	30.7	2.7	1.0	171	154	205 20	205 184	*	<u>a</u>	
							1,92	1.47	30.7	2.7	2.0			+	<u> </u>	+		
\$14-389/1				Bulk Earthworks	¥	10/02/2015	1.81	1.32	3/.2	/7	2.0	120	137	154 20	205 154	_	<u>n</u>	
							1.81	1.32	37.2	2.7	2.3		1		+	+		
\$14-390/1				Bulk Earthworks	4	11/02/2015				,		98	103	103 12	120 103		ш	
							•	-	-	1						1		
\$14-390/2				Bulk Earthworks	£	11/02/2015	1	1				103	103	120	154 120		т.	
							1			,			1	1	\downarrow	-		
\$14-390/3				Bulk Earthworks	Ŧ	11/02/2015	1.80	1.34	34.8	2.7	3.9	45	137	154	188 158		Δ.	
2							1.93	1.43	34.8	2.7	0.0			\dashv	4	+		
				:		10000000		ı	,	1	,	ì	Ę					Falled material from URN S14-390 removed
514-407				BUIK EARTHWOFKS	£	13/02/2015						<u>\$</u>	2	081	202			and reworked, or denying layer passing on SV.
					1		, ,	, 2			, [T	Ţ	╁	1	+	-	
514-437/3				Bulk Earthworks	₹	18/02/2015	1.76	1.21	45.7	2.7	63	202	98	154	137 169	<u> </u>	<u>a</u>	
				1	:	a room out or	1.75	1.34	30.8	2.7	9.1	100	99,	-	<u></u>	L,	c	
514-440/3				DUR ERITHWOLKS	Ę	CIOZZDISI	1.75	1,34	30.8	2.7	9.3	207	2	۹ 	76	٠	_	
5077 753				Only Durthersonies	471	20/02/2014	1.84	1,39	32.9	2.7	3.0	180	182	171	174 174	-	۵	
164	***********			Call Lat Ling Co.	<u> </u>	0107/70/07	1,84	1.39	32.9	2.7	3,1	3	20.			_	•	
C14.449/7				Bulk Earthworks	Ą	20/02/20/15	1.83	1,41	29.9	2.7	5.8	205	205	205	197 203		۵.	
7000							1.81	1.40	29.9	2.7	9.9			+	-	-		
S14.478/1				Bulk Earthworks	X	25/02/2015	1.82	1,37	32.6	2.7	4.6	137	154	171	188 163		Δ	
							1.81	1.37	32.6	2.7	6.4			\dashv	4	-		
214 47819				Bulk Flarffworks	۸۸	25/02/2015	1,82	1.32	37.3	2.7	1.6	137	154	171	188 163		ъ.	
2011-10					•		1,81	1.32	37.3	2.7	2.2			+	4	$\frac{1}{2}$		
514.58172	2860304.615	65406&1 15B	29.87	E F	Į	11/03/2015	1.80	1.35	33.3	2.7	4.3	205	205	205	205 205	-	۵.	
20242	710************************************		0.04				1.81	1.36	33.3	2.7	4.4			\dashv	_	-		
SAK EBAN	2560324 745	6510642 520	37.00	반대	4	11/03/2015	1.86	1.42	30.5	2.7	3.8	154	154	154	188 163		۵	
10010	51 51 750007						1,84	1.41	30.5	2,7	4.7	•			_			
1362				3 4	Ž,	2100350101	1.93	1.45	33.2	2.7	0,0	205	154	145	154 165	Ľ	۵	
1/070-410				III I NIBCI	<u> </u>		1,91	1,43	33.2	2.7	0.0			-	_	,		
200				11.0	H	19/03/2014	1.87	1.37	36.7	2.7	0.0	154	154	188	137 158			
							1.81	1.33	36.7	2.7	2.2			\dashv	_	+		
HENOTH S				E STEEL	Ϋ́	21/03/2015	1.83	1.43	27.5	2.7	7.5	120	137	154	171 146		0.	
							1.83	1.43	27.5	2.7	7.4			-		_		-

	Ь	
Comment These results have not yet passed our entire quelity assurance process. They should be used with coulden and may be subject to denuge.	pass / fail Specification > 140 kPa and < 10 % Air Voids)	

	23 Morgan Street, Newmarket Auckland 1023, New Zealand	market					Job: Arran	Job: Arran's Point Stage 2B	2B		Client: Tonkin & Taylor T&T Job #: 21854.0037	kin & Ta	aylor 1854.00;	37		ŭ	Job# Entered By: YA	614089.032/1 /A
SECTECHNICS	p. +64 9 356 3510 w. www.geotechnics.co.rz	אחצ					NZS 4407:199 Test 4.2.1 Dire	NZS 4407:1991 Frield water content and field dry density usin Test 4.2.1 Direct Transmission Mode	ent and field dr flode	density usir	density using a nuclear densometer	insometei				ō	Checked By:	Page of
URN	Easting	Northing	RL	Location	Tech.	Date	Nuclear Wet Density (t/m³)	Oven Dry Density (t/m3)	Oven Moisture confent (%)	Solid Density (fm3) assumed	Oven Calculated Air Voids (%)	She (UTP =	Shear Strength (RPa) (UTP = Unable to penetrate)	(KPa) enetrate)	Average Shear Strength (kPa)	Re-Spe Test < 14	pass / faii Specification > 140 kPa and < 10 % Air Voids)	Comments These results have not yet passed our entire quality assurance process. They should be used with caution and may be subject to change.
									į	į		Test 1 I	Test 2 Tes	Test 3 Test 4				***************************************
S14-642/2				Bulkfill	ΥA	21/03/2015	1.83	1.44	27.3	2.7	7.8	120	137 154	17.1	146		۵	
\$16 031/2	2660140,178	6510662,460	19.568	Shear Key	¥	13/02/2016	1.85	1.43	29.7	2.7	3.9	205	205 205	15 205	205		_	
\$16 031/3	2660189.142	6510662.988	19.801	Shear Key	TAJ	13/02/2016	2 5	1.40	31,4	2.7	4.0	205	205 205	35 205	205		4	
							28. 5	1.36	33.3	27	4.6	+	+	╁	;			
S16 031/4	2660237,337	6510652.670	22.626	Shear Key	₹	13/02/2016	1.82	1.36	33.3	2.7	4.2	205	205 205	205	205		<u>-</u>	
\$16 055/8	2660189,951	6510657.852	21.62	Wall4	ΤĀ	21/03/2016	1.89	1,44	31.8	2.7	1.2	196	196 18	196 196	196		a.	
	70000	100000000000000000000000000000000000000	8	P7 Shear key	F	01000000	18.	1.36	34.9	2.7	2.1	9	307	140	į	-		
S16 057/13	2660199,537	6510656.857	22.42	,	¥	29/03/2016	1.84	1.35	34.9	2.7	2.0	ng:	-		183		L	
\$16 057/14				P7 Shear key	TA.	29/03/2016	1.84	1.36	35.3	2.7	1.0	143	196 16	168 196	176		<u>.</u>	
31/230 910	28 94 10 82	2510881 183	22 5.4	P7 Shear key	4	34/03/2016	1.85	1.39	33.3	2.7	2.3	150	167 15	154 175	162		_	
S16 US//15	Z000140.0Z	9910001107	16,22		3	29/02/20/67	1.85	1.39	33,3	2.7	2.3	3	+	\dashv	4		-	
\$16 059/21	2660168.003	6510656.595	23.12	P7 RE Wall	TA	31/03/2016	1.85	1.42	29.6	2.7	5.1	196	196 15	196 196	196		<u>.</u>	
***************************************	200 0070320	000000	9,70	1.01.00.70	ŕ	4,04,0046	1.85	1.35	37.4	2.7	0,0	â	10K	195 195	40		۵	
516 060/11	958.7610992	0010003:00	24.10	F) NE Wali	<u> </u>	0102/40/1	1,85	1.34	37.4	2.7	0.0	2	+	+	4		. [
\$15 060/12	2660164,024	6510652.566	24.19	P7 RE Wall	¥	1/04/2016	1.85	1.37	34.8	2.7	5	196	196 19	196 196	196		a.	
\$16 060/13	2660181,243	6510658.102	24.22	P7 RE Wall	≛	1/04/2016	1.82	1.34	35.9	2.7	2.2	196	196	196 196	961		a.	
					+		1,82	1.34	35.9	2.7	2.2	\dagger	-	+	4			
S16 061/9	2660152.064	6510657.176	24.72	P7 RE Wall	ĭ	4/04/2016	1.78	1.28	37.6	2.7	4.3	196	196 16	196 196	196		Ь	
\$16 061/10	2660177,519	6510656.646	25.05	P7 RE Wall	ΔŦ	4/04/2016	1.76	1.27	38,1	2.7	4.5	196	196 18	196 196	196		<u>a</u>	
S16 081/11	2660140 183	6510647 301	24.28	P7 RF Wall	ž	4/04/2016	1.76	1.29	36,7	2.7	5.0	196	196	196 196	196		4	
					+		1.76	1.29	36.7	2.7	5.1		+	+	4	-		
\$16 061/12	2660158.459	6510649,251	24.78	P7 RE Wall	¥	4/04/2016	1.75	1.28	36.8	2.7	5.5	961	196	196 196	186		۵	
216 063/8	2650150 785	6410853 407	278	D7 Re Wall	4	SMADD16	1.83	1.36	34.7	2.7	2.8	55	154	196 168	167		۵	
ninon nin	2000	1000000	20.12				1.82	1.35	34.7	2.7	3.1		+	╬	4		ľ	
\$16 063/9	2660183,681	6510648.556	25.06	P7 Re Wall	¥	6/04/2016	1.84	1.37	34.0	2.7	2.4	154	182 16	168 196	175		Δ.	
516 053/10	2660203 408	6510650.193	24.91	P7 Re Wall	Ţ	6/04/2018	1.87	1.43	31.2	2,7	2.7	150	150 18	151 182	158		4	
					-		1.86	1.42	31.2	2.7	3.1		+	+	_	+		
\$16 064/17	2660202.663	6510646,758	25.14	P7 RE Wall	¥	7/04/2016	1.79	1.29	38.2	2.7	3.0	168	155 11	196 196	179		۵	
97770	700 00 700	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25.42	16/W 20 CO	Ą,	7104120146	1.80	1.31	37.8	2.7	2.2	168	155 19	196 196	671		Δ	
01/200 015	2000102.031	921004970	C±:07		5	217-11-211	1,81	1,31	37.8	2.7	1.8		+		_	+		
\$16 064/19	2660146.189	6510656.134	26,01	P7 RE Wall	¥	7/04/2016	77.1	1,31	33.8	2.7	1.7	168	155 13	196 196	179		<u>n</u>	
S16 070/6	2660194.789	6510652.437	27.40	P7 RE Wall	¥	14/04/2016	1.76	1,32	33.3	2.7	7.0	192	192 16	164 151	175		a.	
							1,7,7	1.33	33,3	2.7	5, F	┿	+	╁	_			
\$16 070/7	2660229.713	6510650,938	27.29	P7 RE Wall	<u> </u>	14/04/2016	1.91	1.45	31.5	2.7	0.3	15.	151 16	164 192	165		Ъ	
\$16 070/8	2660257.449	6510650.993	27.17	P7 RE Walf	Ϋ́	14/04/2016	1.85	1.37	35.5	2.7	6.0	158	164 19	192 192	121		۵	
					\downarrow		1.82	1.38	35.5	2.7	4.1			╫	┿			
\$16 070/9	2660149.131	6510649.984	26.46	P7 RE Wall	ΤĀ	14/04/2016	1.82	1.37	32.7	2.7	4.4	164	151	181	172		ь.	
																	-	

23 Morgan Street, Newmarket Auckand 1023. New Zealand p. +64 9-356-3510 w. www.geotechnics.co.nz

Client: Tonkin & Taylor

T&T Job #: 21854,0037

NZS 4407:1991 Field water content and field dry density using a nuclear densometer

Test 4.2.1 Direct Transmission Mode

NZGS Annual mode

614089.032/1 Job # Entered By: YA Checked By:

Page

ō

entire ald be

•	•						NZGS Augu	NZGS August 2001 Guidelines for hand held shear vane test	or hand held s	hear vane test)
	Easting	Northing	RL	Location	Tech.	Date	Nuclear We	Nuclear Wet Oven Dry Density Density (t/m3)	Oven	Solid		eys = dIU)	Shear Strength (kPa) (UTP = Unable to penetrate)	kPa) thetrate)	Average		pass / fail Specification	Comments These results have not vet passed our entit
							(vm³)		content (%)	(f/m3) assumed	Air Voids (%)	;			Strength (KPa)	3 1g &	> 140 % Air < 10 % Air Voids)	quality assurance process. They should be used with caution and may be subject to change.
												Test 1 T	Test 2 Test 3	3 Test 4				
S16 074/28	2660169,603	6510646.433	29.30	P7 RE Wall	ř	21/04/2016	1.80	1.33	35.5	2.7	3.6	15	151 164	178	161		Δ.	
							1.80	1.33	35.5	2.7	3.9	\dashv	\dashv	┦				
\$16 074/29	2660208,445	6510644,156	28.76	P7 RE Wall	TA	21/04/2016	1.78	1.30	36.4	2.7	4.3	151	151 164	178	361		0	
							1.80	1.32	36.4	2.7	3.3	\dashv	\dashv	\dashv				
044 074 000	200 2000000	000 0700700	75	10,101,107,00	Ě	4700000	1.82	1.35	34.7	2.7	3.1	_	7	_	20			
_	2001/203.200	601,0640,068	19:07	F/ KE Mall	<u>«</u>	# Z1/04/2010	1.82	1.35	34.7	2.7	3.1	2		2	<u> </u>		_	
-							9	* 30	7.04	1.0	2.4		╀	╁		$\frac{1}{1}$		
S16 075/9	2660232.203	6510649.377	28.95	P7 Re Wall		22/04/2016	8 4	8 8	22.7	2.7	3.0	192	192 192	192	192		Δ	
\dagger					+		2	80.	32.7	7.7	3.0		+	+		+		
\$16 085/6	2560409.538	6510652.796	27.479	P7 Re Wall	ĭ	9/05/2016	08.	1.33	34.7	2.7	4.3	151	151 151	151	151		Δ	
							1.79	1.33	34.7	2.7	4.6		_	-				
۲	Fac curdosc	AFF 03000130	27.20	0-751-0-60	ř	Crocilate	1.83	1.36	34.5	2.7	2.6	_	-		7,	_	ı	
STD DB9//	ton znanaoz	977,888U100	Z	F/ Ke waii	<u> </u>	at nzionie	83	1.36	34.5	2.5	2.6	01	-	<u> </u>	<u> </u>		L	
-								4 9	, , ,	1	,	╀	╀	۲		l		
St6 131				Wall 4	¥	13/09/2016	1.83	7,36	54.4	2.1	Z./	74	214 214	214	214		Δ	
+					+		1.81	1.35	34.4	2.7	3.7	1	1	1		1		
S16 131				Wall 4	Ţ	13/09/2016	1.89	1.43	32.0	2.7	1.2	214	214 214	214	214		۵	
							1.88	1.43	32,0	2.7	1.6			-			•	
100				7 11 11 11	ř	0,000,000,00	1.89	1.4.1	33.8	2.7	0.2	3		č	77.7		(
				5	<u>}</u>		1.89	1,41	33.8	2.7	0'0				<u>t</u>			
646 424				A Barel	Ψ.	12/00/2015	1.84	1.37	34.1	2.7	2.6			7,70	77.7		c	
				+ 1884	₹	DINZIGOIC 1	1,82	1.36	34.1	2.7	3.3				<u>*</u> 7		L.	
240				744	F	O POCIOCIA P	_	1,36	36.0	2.7	0.8		100		į		,	
				1 10 22	2	0102/20/4-1	1.84	1.35	36.0	2.7	5.7				<u>n</u>		١.	
							28.5	1 34	38.2	2.7	0.0		H	╀╌				
S16132				Wall 4	₹	14/09/2016	3 3	7 22	200	7.0	200	158	168 160	6	4		a	
					-		to:	3 !	20.2	7.7	9,		1	+		t	Ī	
•				P7 Wall 4	Æ	13/10/2016	1.85	1.37	35.1	2.7	1.1	214	214 214	214	214		a,	
-							1.86	1,38	35.1	2.7	9.0							
				P7 Wall 4	TAJ	13/10/2016	1.81	1.33	35.9	2.7	2.9	7.4	214 214	214	214		a	
							1.80	1,33	35.9	2.7	3.3	_	-	-				
				D 7 1A fall A	. F	44/10/2016	1.88	1,40	34.0	2.7	9.0	217	714	217	744		ρ	
					2		1.81	1.35	34.0	2.7	4.3				ŧ.,			
727 370				7.07166-0.4	F	Chaciente	1.78	1,30	36.8	2.7	3,9	<u> </u>	l-	H	į		ľ	
				t signa / L	2	9 10210 4-1	177	1.29	36.8	2.4	7.7	4	414 214	± 7	417		ц	
		-			1		\downarrow	80.7	35.9	4.6			+	t				
S16 154				P7 Wall 4	¥	14/10/2016		26 7	25.0	3.7	200	214	214 214	24	214		Δ	
\dagger					+		5		300	100	8		 	1		t		
				P7 wall 4	T.	14/10/2016	08.	1.55	0.85	7.7	00	214	214 214	214	214		Д	
	***************************************	***************************************	***************************************				1.81	1.29	39.5	2.7	1.0		+	+				
				P7 Wall 4	Ţ¥.	14/10/2016	1.74	1.27	36.7	2.7	6.2	214	214 214	214	214		_	
						-	1.74	1.28	36.7	2.7	6.0	4	+	+		_		
S16 154				P7 Wall 4	Į.	14/10/2016		1.28	36.6	2.7	5.4	214	214 214	214	214		۵	
					-		1.76	1.29	36.6	2.7	5,0	_					•	
-				A 114200 A	F	171600066	1,83	1.34	36.6	2.7	1.6	⊢	⊢	⊢				
				+ HEAD L	3	91070177	1.83	1.34	36.6	2.7	6.	<u>†</u>	*17 +17	t (1	± 7		<u>.</u>	
+					_		1 24	- 52	30.5	2.4	0	╀	╀	╁╴		-		
S16 155				P7 Wall 4	₹	17/10/2016		40.7	1,00	7.0	7	7,4	214 214	214	214		<u>п</u>	
+					+		, i	2	2000	7-7			1	+		-		
S16 155				P7 Wall 4	Z.	17/10/2016		46.	1.00	7.7	4.4	214	214 214	1 214	214		۵	
1					1		1.83	1.34	36.1	2.7	œ.	1	+	+				
				P7 Wall 4	¥	17/10/2016	1.81	1.31	38.1	2.7	1.4	214	214 214	214	214		Δ	
-					:		1.83	1.32	38.1	2.7	0.7	\dashv	\dashv					
				D7 10/311 A	-	18/10/2018	1.79	1.29	39.1	2.7	1.8	168	193 165	153	167		۵	
20.0				- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				1.29	39.1	2.7	2.0	3	_	-	5		-	
							1.78	1.28	39.3	2.7	2.5	 						
S16 156				P7 Wall 4	Ŧ	18/10/2016						160	214 189	202	25		۵	
-							1.77	1.27	39.3	2,7	2.8							

23 Margan Sheet, Newmarket Auckand 1023, New Zealand p. +64 9 356 3510 w. www.geotechnics.co.nz **O**SCOTECHNICS

Job # Entered By: YA Checked By:

Comments
These results have not yet passed our entire
quality assurance process. They should be
used with caution and may be subject to
change. 614089.032/1 Page pass / fail Specification > 140 kPa and < 10 % Air Voids) Δ, Re-Average Shear Strength (kPa) 183 159 Shear Strength (kPa) (UTP = Unable to penetrate) Client: Tonkin & Taylor
T&T.Job #: 21854.037
NZS 4407:1991 Field water content and field dry density using a nuclear densoneter
Past 4.2.1 birect Transmission Mode
NZGS Annues man A. Test 3 136 Test 2 176 202 Test 1 Oven Calculated Air Voids (%) 4.3 3.5 0.8 1.7 NZGS August 2001 Guidelines for hand held shear vane test.

Nuclear Wet Oven Dry Density Oven Solid

Density (t/m3) (t/m3) content (%) (t/m3) Solid Density (t/m3) assumed 35.8 35.8 35.8 36.9 38.1 38.1 37.6 37.6 37.6 34.6 35.6 35.6 35.6 36.1 38.3 38.3

214 200 201 190 74 178 169 192 214 183 214 147 196 214 214 171 141 177 214 214 214 183 214 186 214 159 174 214 214 214 214 160 214 153 214

0.7 1.4 0.7 2.7 3.2

¥ Ţ.

P7 Wall 4 P7 Wall 4

P7 Wall 4

₹ Z ¥

P7 Wall 4

S16 158

516 158

\$16 157

P7 Wall 4

P7 Wall 4

20/10/2016 20/10/2016 21/10/2016 21/10/2016 21/10/2016 21/10/2016

₹

S16 157

20/10/2016 18/10/2016

¥ TA.

1.78 1.85 1.85

18/10/2016

7

P7 Wall 4

S16 156 S16 156 \$16 157

P7 Wall 4 P7 Wall 4

Date

Tech.

Location

집

Northing

Easting

URN

1.82 1.83 1.84 1.83 1.84 1.83 1.79 1.79 1.72 1.72 1.72

0.4

Δ, • • • ъ. D. ۵ o.